This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383148 #22 Apr 24 2025 18:27:20 %S A383148 12,18,20,24,30,40,42,54,56,60,66,78,84,88,90,102,104,114,120,132,138, %T A383148 140,168,174,186,196,204,222,224,234,246,252,258,264,270,280,282,308, %U A383148 312,318,348,354,360,364,366,368,380,402,414,420,426,438,440,456,464,468,474,476 %N A383148 k-facile numbers: Numbers m such that the sum of the divisors of m is equal to 2*m+s where s is a product of distinct divisors of m. %C A383148 Subsequence of A005101 but seem to be much rarer. %H A383148 Charles R Greathouse IV, <a href="/A383148/b383148.txt">Table of n, a(n) for n = 1..10000</a> %H A383148 S. Flora Jeba, Anirban Roy, and Manjil P. Saikia, <a href="https://doi.org/10.1007/978-981-97-6798-4_9">On k-Facile Perfect Numbers</a>, Algebra and Its Applications (ICAA-2023), Springer Proc. Math. Stat., Vol. 474 (2025), 111-121. %e A383148 The sum of the divisors of 60 is 168, and 168 = 2*60 + 48, and 48 = 4*12 and 4 and 12 are divisors of 60, so 60 is in the sequence. %t A383148 q[m_] := Module[{d = Divisors[m], ab}, ab = Total[d] - 2*m; ab > 0 && AnyTrue[Subsets[d], Times @@ # == ab &]]; Select[Range[500], q] (* _Amiram Eldar_, Apr 18 2025 *) %o A383148 (Sage) %o A383148 def facile_candidates(n): %o A383148 from itertools import combinations %o A383148 divs = divisors(n) %o A383148 sigma_n = sigma(n, 1) %o A383148 candidates = set() %o A383148 # Generate all products of distinct combinations of divisors %o A383148 for r in range(2, len(divs)+1): # start from 2-element products to avoid m=n %o A383148 for combo in combinations(divs, r): %o A383148 product = prod(combo) %o A383148 if product < sigma_n: %o A383148 candidates.add(product) %o A383148 return sorted(candidates) %o A383148 def find_facile_perfects(x): %o A383148 result = [] %o A383148 for n in range(1, x+1): %o A383148 sig = sigma(n, 1) %o A383148 if sig < 2*n: %o A383148 continue %o A383148 candidates = facile_candidates(n) %o A383148 for m in candidates: %o A383148 if sig == 2*n + m: %o A383148 print(n,m) %o A383148 result.append(n) %o A383148 break %o A383148 return result %o A383148 (PARI) prodDistinctDiv(n, k, f=factor(n))=my(D=divisors([n,f])); helper(D[2..#D], k) %o A383148 helper(v,k)=if(k==1, return(1)); v=select(d->k%d==0, v); if(#v<3, if(#v==2, return(v[2]==k || vecprod(v)==k)); return(#v && v[1]==k)); my(u=v[1..#v-1]); helper(u,k) || helper(u,k/v[#v]) %o A383148 is(n,f=factor(n))=my(t=sigma([n,f])-2*n); t>1 && prodDistinctDiv(n, t, f) \\ _Charles R Greathouse IV_, Apr 24 2025 %Y A383148 Subsequence of A005101. %Y A383148 Cf. A000203, A000396, A181595. %K A383148 nonn %O A383148 1,1 %A A383148 _Joshua Zelinsky_, Apr 17 2025