This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383149 #35 Apr 18 2025 08:44:21 %S A383149 1,0,1,0,3,1,0,12,9,1,0,66,75,18,1,0,480,690,255,30,1,0,4368,7290, %T A383149 3555,645,45,1,0,47712,88536,52290,12705,1365,63,1,0,608016,1223628, %U A383149 831684,249585,36120,2562,84,1,0,8855040,19019664,14405580,5073012,915705,87696,4410,108,1 %N A383149 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = (-1)^k * [m^k] (1/2^(m-n)) * Sum_{k=0..m} k^n * (-1)^m * 3^(m-k) * binomial(m,k). %H A383149 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RisingFactorial.html">Rising Factorial</a> %F A383149 f_n(m) = (1/2^(m-n)) * Sum_{k=0..m} k^n * (-1)^m * 3^(m-k) * binomial(m,k). %F A383149 T(n,k) = [m^k] f_n(-m). %F A383149 T(n,k) = Sum_{j=k..n} 2^(n-j) * Stirling2(n,j) * |Stirling1(j,k)|. %F A383149 T(n,k) = [x^k] Sum_{k=0..n} 2^(n-k) * Stirling2(n,k) * RisingFactorial(x,k). %F A383149 Sum_{k=0..n} (-1)^k * T(n,k) = f_m(1) = -2^(n-1) for n > 0. %F A383149 E.g.f. of column k (with leading zeros): g(x)^k / k! with g(x) = -log(1 - (exp(2*x) - 1)/2). %e A383149 f_0(m) = 1. %e A383149 f_1(m) = -m. %e A383149 f_2(m) = -3*m + m^2. %e A383149 f_3(m) = -12*m + 9*m^2 - m^3. %e A383149 f_4(m) = -66*m + 75*m^2 - 18*m^3 + m^4. %e A383149 f_5(m) = -480*m + 690*m^2 - 255*m^3 + 30*m^4 - m^5. %e A383149 Triangle begins: %e A383149 1; %e A383149 0, 1; %e A383149 0, 3, 1; %e A383149 0, 12, 9, 1; %e A383149 0, 66, 75, 18, 1; %e A383149 0, 480, 690, 255, 30, 1; %e A383149 0, 4368, 7290, 3555, 645, 45, 1; %e A383149 0, 47712, 88536, 52290, 12705, 1365, 63, 1; %e A383149 ... %o A383149 (PARI) T(n, k) = sum(j=k, n, 2^(n-j)*stirling(n, j, 2)*abs(stirling(j, k, 1))); %o A383149 (Sage) %o A383149 def a_row(n): %o A383149 s = sum(2^(n-k)*stirling_number2(n, k)*rising_factorial(x, k) for k in (0..n)) %o A383149 return expand(s).list() %o A383149 for n in (0..9): print(a_row(n)) %Y A383149 Columns k=0..3 give A000007, A123227(n-1), A383163, A383164. %Y A383149 Row sums give A122704. %Y A383149 Cf. A001787, A178987, A383150, A383151, A383152, A383155. %Y A383149 Cf. A129062, A209849, A383140. %K A383149 nonn,tabl %O A383149 0,5 %A A383149 _Seiichi Manyama_, Apr 18 2025