cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383152 a(n) = Sum_{k=0..n} k^5 * (-1)^k * 3^(n-k) * binomial(n,k).

This page as a plain text file.
%I A383152 #28 May 01 2025 23:52:37
%S A383152 0,-1,26,18,-272,-1400,-4032,-7168,-1024,55296,294400,1086976,3354624,
%T A383152 9132032,22249472,47923200,85983232,99155968,-102629376,-1237712896,
%U A383152 -5688524800,-20775960576,-67868033024,-207022456832,-602167836672,-1690304512000,-4613767954432
%N A383152 a(n) = Sum_{k=0..n} k^5 * (-1)^k * 3^(n-k) * binomial(n,k).
%H A383152 Vincenzo Librandi, <a href="/A383152/b383152.txt">Table of n, a(n) for n = 0..700</a>
%F A383152 a(n) = 2^(n-5) * (-480*n + 690*n^2 - 255*n^3 + 30*n^4 - n^5).
%t A383152 Table[2^(n-5)*(-480*n+690*n^2-255*n^3+30*n^4-n^5),{n,0,50}] (* _Vincenzo Librandi_, Apr 24 2025 *)
%o A383152 (PARI) a(n) = 2^(n-5)*(-480*n+690*n^2-255*n^3+30*n^4-n^5);
%o A383152 (Magma) [&+[k^5 * (-1)^k * 3^(n-k) * Binomial(n, k): k in [0..n]]: n in [0..29]]; // _Vincenzo Librandi_, Apr 23 2025
%Y A383152 Cf. A001787, A178987, A383150, A383151, A383155.
%K A383152 sign,easy
%O A383152 0,3
%A A383152 _Seiichi Manyama_, Apr 18 2025