cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383156 The sum of the maximum exponents in the prime factorizations of the divisors of n.

This page as a plain text file.
%I A383156 #10 Apr 20 2025 02:39:02
%S A383156 0,1,1,3,1,3,1,6,3,3,1,7,1,3,3,10,1,7,1,7,3,3,1,13,3,3,6,7,1,7,1,15,3,
%T A383156 3,3,13,1,3,3,13,1,7,1,7,7,3,1,21,3,7,3,7,1,13,3,13,3,3,1,15,1,3,7,21,
%U A383156 3,7,1,7,3,7,1,22,1,3,7,7,3,7,1,21,10,3,1
%N A383156 The sum of the maximum exponents in the prime factorizations of the divisors of n.
%C A383156 Inverse Möbius transform of A051903.
%C A383156 a(n) depends only on the prime signature of n (A118914).
%H A383156 Amiram Eldar, <a href="/A383156/b383156.txt">Table of n, a(n) for n = 1..10000</a>
%H A383156 Amiram Eldar, <a href="/A383156/a383156.jpg">Plot of Sum_{k=1..n} a(k)/(c_1*n*log(n) + c_2*n) - 1 for n = 10^(1..10)</a>.
%F A383156 a(n) = Sum_{d|n} A051903(d).
%F A383156 a(n) = A000005(n) * A383157(n)/A383158(n).
%F A383156 a(p^e) = e*(e+1)/2 for prime p and e >= 0. In particular, a(p) = 1 for prime p.
%F A383156 a(n) = 2^omega(n) - 1 = A309307(n) if n is squarefree (A005117).
%F A383156 a(n) = tau(n, 2) - 1 + Sum_{k=2..A051903(n)} k * (tau(n, k+1) - tau(n, k)), where tau(n, k) is the number of k-free divisors of n (k-free numbers are numbers that are not divisible by a k-th power other than 1). For a given k >= 2, tau(n, k) is a multiplicative function with tau(p^e, k) = min(e+1, k). E.g., tau(n, 2) = A034444(n), tau(n, 3) = A073184(n), and tau(n, 4) = A252505(n).
%F A383156 Sum_{k=1..n} a(k) ~ c_1 * n * log(n) + c_2 * n, where c_1 is Niven's constant (A033150), c_2 = -1 + (2*gamma - 1)*c_1 - 2*zeta'(2)/zeta(2)^2 - Sum_{k>=3} (k-1) * (k*zeta'(k)/zeta(k)^2 - (k-1)*zeta'(k-1)/zeta(k-1)^2) = -2.37613633493572231366..., and gamma is Euler's constant (A001620).
%e A383156 4 has 3 divisors: 1, 2 = 2^1 and 4 = 2^2. The maximum exponents in their prime factorizations are 0, 1 and 2, respectively. Therefore, a(4) = 0 + 1 + 2 = 3.
%e A383156 12 has 6 divisors: 1, 2 = 2^1, 3 = 3^1, 4 = 2^2, 6 = 2 * 3 and 12 = 2^2 * 3. The maximum exponents in their prime factorizations are 0, 1, 1, 2, 1 and 2, respectively. Therefore, a(12) = 0 + 1 + 1 + 2 + 1 + 2 = 7.
%t A383156 emax[n_] := If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]; a[n_] := DivisorSum[n, emax[#] &]; Array[a, 100]
%t A383156 (* second program: *)
%t A383156 a[n_] := If[n == 1, 0, Module[{e = FactorInteger[n][[;; , 2]], emax, v}, emax = Max[e]; v = Table[Times @@ (Min[# + 1, k + 1] & /@ e), {k, 1, emax}]; v[[1]] + Sum[k*(v[[k]] - v[[k - 1]]), {k, 2, emax}] - 1]]; Array[a, 100]
%o A383156 (PARI) emax(n) = if(n == 1, 0, vecmax(factor(n)[,2]));
%o A383156 a(n) = sumdiv(n, d, emax(d));
%o A383156 (PARI) a(n) = if(n == 1, 0, my(e = factor(n)[, 2], emax = vecmax(e), v); v = vector(emax, k, vecprod(apply(x ->min(x+1 , k+1), e))); v[1] + sum(k = 2, emax, k * (v[k]-v[k-1])) - 1);
%Y A383156 Cf. A000005, A001221, A005117, A034444, A051903, A073184, A118914, A252505, A309307, A383157, A383158, A383159.
%Y A383156 Cf. A001620, A013661, A033150, A306016.
%K A383156 nonn,easy
%O A383156 1,4
%A A383156 _Amiram Eldar_, Apr 18 2025