cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383157 a(n) is the numerator of the mean of the maximum exponents in the prime factorizations of the divisors of n.

This page as a plain text file.
%I A383157 #10 Apr 20 2025 02:39:14
%S A383157 0,1,1,1,1,3,1,3,1,3,1,7,1,3,3,2,1,7,1,7,3,3,1,13,1,3,3,7,1,7,1,5,3,3,
%T A383157 3,13,1,3,3,13,1,7,1,7,7,3,1,21,1,7,3,7,1,13,3,13,3,3,1,5,1,3,7,3,3,7,
%U A383157 1,7,3,7,1,11,1,3,7,7,3,7,1,21,2,3,1,5,3
%N A383157 a(n) is the numerator of the mean of the maximum exponents in the prime factorizations of the divisors of n.
%C A383157 a(n) depends only on the prime signature of n (A118914).
%H A383157 Amiram Eldar, <a href="/A383157/b383157.txt">Table of n, a(n) for n = 1..10000</a>
%H A383157 Amiram Eldar, <a href="/A383157/a383157.jpg">Plot of (Sum_{k=1..n} a(k)/A383158(k))/(c_1*n - c_2*n/sqrt(log(n))) for n = 10^(1..10)</a>.
%F A383157 a(n) = numerator(Sum_{d|n} A051903(d) / A000005(n)) = numerator(A383156(n) / A000005(n)).
%F A383157 a(n)/A383158(n) = 1 if and only if n is a square of a prime (A001248).
%F A383157 Sum_{k=1..n} a(k)/A383158(k) ~ c_1 * n - c_2 * n /sqrt(log(n)), where c_1 = m(2) + Sum_{k>=3} (k-1) * (m(k) - m(k-1)) = 1.27968644485944694957... is the asymptotic mean of the fractions a(k)/A383158(k), m(k) = Product_{p prime} (1 + (1-1/p) * Sum_{i>=k} (k/(i+1) - 1)/p^i is the asymptotic mean of the ratio between the number of k-free divisors and the number of divisors, e.g., m(2) = A308043 and m(3) = A361062, and c_2 = A345231 = 0.54685595528047446684... .
%e A383157 Fractions begin with 0, 1/2, 1/2, 1, 1/2, 3/4, 1/2, 3/2, 1, 3/4, 1/2, 7/6, ...
%e A383157 4 has 3 divisors: 1, 2 = 2^1 and 4 = 2^2. The maximum exponents in their prime factorizations are 0, 1 and 2, respectively. Therefore, a(4) = numerator((0 + 1 + 2)/3) = numerator(1) = 1.
%e A383157 12 has 6 divisors: 1, 2 = 2^1, 3 = 3^1, 4 = 2^2, 6 = 2 * 3 and 12 = 2^2 * 3. The maximum exponents in their prime factorizations are 0, 1, 1, 2, 1 and 2, respectively. Therefore, a(12) = numerator((0 + 1 + 1 + 2 + 1 + 2)/6) = numerator(7/6) = 7.
%t A383157 emax[n_] := If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]; a[n_] := Numerator[DivisorSum[n, emax[#] &] / DivisorSigma[0, n]]; Array[a, 100]
%o A383157 (PARI) emax(n) = if(n == 1, 0, vecmax(factor(n)[,2]));
%o A383157 a(n) = my(f = factor(n)); numerator(sumdiv(n, d, emax(d)) / numdiv(f));
%Y A383157 Cf. A000005, A001248, A051903, A118914, A308043, A345231, A361062, A383156, A383158 (denominators).
%K A383157 nonn,easy,frac
%O A383157 1,6
%A A383157 _Amiram Eldar_, Apr 18 2025