A383158 a(n) is the denominator of the mean of the maximum exponents in the prime factorizations of the divisors of n.
1, 2, 2, 1, 2, 4, 2, 2, 1, 4, 2, 6, 2, 4, 4, 1, 2, 6, 2, 6, 4, 4, 2, 8, 1, 4, 2, 6, 2, 8, 2, 2, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 1, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 4, 2, 4, 6, 1, 4, 8, 2, 6, 4, 8, 2, 6, 2, 4, 6, 6, 4, 8, 2, 10, 1, 4, 2, 4, 4, 4, 4
Offset: 1
Examples
Fractions begin with 0, 1/2, 1/2, 1, 1/2, 3/4, 1/2, 3/2, 1, 3/4, 1/2, 7/6, ... 4 has 3 divisors: 1, 2 = 2^1 and 4 = 2^2. The maximum exponents in their prime factorizations are 0, 1 and 2, respectively. Therefore, a(4) = denominator((0 + 1 + 2)/3) = denominator(1) = 1. 12 has 6 divisors: 1, 2 = 2^1, 3 = 3^1, 4 = 2^2, 6 = 2 * 3 and 12 = 2^2 * 3. The maximum exponents in their prime factorizations are 0, 1, 1, 2, 1 and 2, respectively. Therefore, a(12) = denominator((0 + 1 + 1 + 2 + 1 + 2)/6) = denominator(7/6) = 6.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
emax[n_] := If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]; a[n_] := Denominator[DivisorSum[n, emax[#] &] / DivisorSigma[0, n]]; Array[a, 100]
-
PARI
emax(n) = if(n == 1, 0, vecmax(factor(n)[,2])); a(n) = my(f = factor(n)); denominator(sumdiv(n, d, emax(d)) / numdiv(f));
Comments