cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383159 The sum of the maximum exponents in the prime factorizations of the unitary divisors of n.

This page as a plain text file.
%I A383159 #11 Apr 20 2025 02:40:04
%S A383159 0,1,1,2,1,3,1,3,2,3,1,5,1,3,3,4,1,5,1,5,3,3,1,7,2,3,3,5,1,7,1,5,3,3,
%T A383159 3,6,1,3,3,7,1,7,1,5,5,3,1,9,2,5,3,5,1,7,3,7,3,3,1,11,1,3,5,6,3,7,1,5,
%U A383159 3,7,1,8,1,3,5,5,3,7,1,9,4,3,1,11,3,3,3
%N A383159 The sum of the maximum exponents in the prime factorizations of the unitary divisors of n.
%C A383159 First differs from A032741 at n = 36, and from A305611 and A325770 at n = 30.
%C A383159 a(n) depends only on the prime signature of n (A118914).
%H A383159 Amiram Eldar, <a href="/A383159/b383159.txt">Table of n, a(n) for n = 1..10000</a>
%H A383159 Amiram Eldar, <a href="/A383159/a383159.jpg">Plot of abs((Sum_{k=1..n} a(k))/(c_1*n*log(n) + c_2*n) - 1) for n = 10^(1..10)</a>.
%F A383159 a(n) = Sum_{d|n, gcd(d, n/d) = 1} A051903(d).
%F A383159 a(n) = A034444(n) * A383160(n)/A383161(n).
%F A383159 a(n) <= A383156(n), with equality if and only if n is squarefree (A005117).
%F A383159 a(n) = utau(n, 2) - 1 + Sum_{k=2..A051903(n)} k * (utau(n, k+1) - utau(n, k)), where utau(n, k) is the number of k-free unitary divisors of n (k-free numbers are numbers that are not divisible by a k-th power other than 1). For a given k >= 2, utau(n, k) is a multiplicative function with utau(p^e, k) = 2 if e < k, and 1 otherwise. E.g., utau(n, 2) = A056671(n), utau(n, 3) = A365498(n), and utau(n, 4) = A365499(n).
%F A383159 Sum_{k=1..n} a(k) ~ c_1 * n * log(n) + c_2 * n, where c_1 = c(2) + Sum_{k>=3} (k-1) * (c(k) - c(k-1)) = 0.91974850283445458744..., c(k) = Product_{p prime} (1 - 1/p^2 - 1/p^k + 1/p^(k+1)), c_2 = -1 + (2*gamma - 1)*c_1 + d(2) + Sum_{k>=3} (k-1) * (d(k) - d(k-1)) = -0.50780794945146599739..., d(k) = c(k) * Sum_{p prime} (2*p^(k-1) + k*p - k - 1) * log(p) / (p^(k+1) - p^(k-1) - p + 1), and gamma is Euler's constant (A001620).
%e A383159 4 has 2 unitary divisors: 1 and 4 = 2^2. The maximum exponents in their prime factorizations are 0 and 2, respectively. Therefore, a(4) = 0 + 2 = 2.
%e A383159 12 has 4 divisors: 1, 3 = 3^1, 4 = 2^2 and 12 = 2^2 * 3. The maximum exponents in their prime factorizations are 0, 1, 2 and 2, respectively. Therefore, a(12) = 0 + 1 + 2 + 2 = 5.
%t A383159 emax[n_] := If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]; a[n_] := DivisorSum[n, emax[#] &, CoprimeQ[#, n/#] &]; Array[a, 100]
%t A383159 (* second program: *)
%t A383159 a[n_] := If[n == 1, 0, Module[{e = FactorInteger[n][[;; , 2]], emax, v}, emax = Max[e]; v = Table[Times @@ (If[# < k + 1, 2, 1] & /@ e), {k, 1, emax}]; v[[1]] + Sum[k*(v[[k]] - v[[k - 1]]), {k, 2, emax}] - 1]]; Array[a, 100]
%o A383159 (PARI) emax(n) = if(n == 1, 0, vecmax(factor(n)[,2]));
%o A383159 a(n) = sumdiv(n, d, (gcd(d, n/d) == 1) * emax(d));
%o A383159 (PARI) a(n) = if(n == 1, 0, my(e = factor(n)[, 2], emax = vecmax(e), v); v = vector(emax, k, vecprod(apply(x ->if(x < k+1, 2, 1), e))); v[1] + sum(k = 2, emax, k * (v[k]-v[k-1])) - 1);
%Y A383159 The unitary version of A383156.
%Y A383159 Cf. A005117, A034444, A051903, A056671, A077610, A365498, A365499, A383160, A383161.
%Y A383159 Cf. A032741, A305611, A325770.
%K A383159 nonn,easy
%O A383159 1,4
%A A383159 _Amiram Eldar_, Apr 18 2025