cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383177 Sphenic numbers k such that floor(log(k)/log(lpf(k))) = 1+floor(log(k)/log(p)) for all primes p | k such that p > lpf(k), where lpf = A020639(k).

This page as a plain text file.
%I A383177 #16 Jun 07 2025 11:58:51
%S A383177 1001,1309,1547,1729,2093,2261,3553,4199,4301,4807,5681,6061,6479,
%T A383177 7337,7843,8671,9269,9361,9889,10373,10879,11063,11339,11687,11803,
%U A383177 11891,12121,12617,13079,13717,13949,13981,14911,15283,15457,16211,16523,17081,17329,17719
%N A383177 Sphenic numbers k such that floor(log(k)/log(lpf(k))) = 1+floor(log(k)/log(p)) for all primes p | k such that p > lpf(k), where lpf = A020639(k).
%C A383177 Subset of A382022, a subset of A007304.
%C A383177 Let primes p, q, r, p < q < r divide k.
%C A383177 Then floor(log(k)/log(p)) = 3 and floor(log(k)/log(q)) = floor(log(k)/log(r)) = 2.
%C A383177 Row a(n) of A162306 is the set {1, p, p^2, p^3, q, p*q, p^2*q, q^2, p*q^2, r, p*r, p^2*r, q*r, p*q*r, r^2}.
%H A383177 Michael De Vlieger, <a href="/A383177/b383177.txt">Table of n, a(n) for n = 1..10000</a>
%H A383177 Michael De Vlieger, <a href="/A383177/a383177.png">Hasse diagram of R(1001)</a> with logarithmic vertical scale. Gray represents the empty product, red represents primes, gold represents proper prime powers, green squarefree composites, and blue numbers that are neither squarefree nor prime powers.
%H A383177 Michael De Vlieger, <a href="/A383177/a383177_1.png">Three dimensional diagram of R(a(n))</a>, labeling exponents along axes, showing p^3, q^2, and r^2, and using the color scheme above.
%H A383177 Michael De Vlieger, <a href="/A383177/a383177_2.png">Plot prime(i) | a(n) at (x,y) = (n,i)</a> for n = 1..2048, 8X vertical exaggeration. The green bar at the bottom of the graph emphasizes the x axis that rides on the top edge of the bar.
%F A383177 A010846(a(n)) = 15.
%e A383177 Let s(n) = A010846(a(n)).
%e A383177 Table of a(n) for n = 1..12, showing prime factors of a(n) and
%e A383177  n   a(n)  facs(a(n))  s(n)
%e A383177 ---------------------------
%e A383177  1   1001    7*11*13    15
%e A383177  2   1309    7*11*17    15
%e A383177  3   1547    7*13*17    15
%e A383177  4   1729    7*13*19    15
%e A383177  5   2093    7*13*23    15
%e A383177  6   2261    7*17*19    15
%e A383177  7   3553   11*17*19    15
%e A383177  8   4199   13*17*19    15
%e A383177  9   4301   11*17*23    15
%e A383177 10   4807   11*19*23    15
%e A383177 11   5681   13*19*23    15
%e A383177 12   6061   11*19*29    15
%e A383177 Let f(p,k) = floor(log(k)/log(p)) and let w be the list of f(p,k) across the sorted list of distinct prime factors of k.
%e A383177 30 = 2*3*5 is not in the sequence since f(30,2) = 4, f(30,3) = 3, f(30,5) = 2.
%e A383177 a(1) = 1001 = 7*11*13; f(7,1001) = 3, f(11,1001) = 2, f(13,1001) = 2.
%e A383177 a(2) = 1309 = 7*11*17; w(1309) = {3,2,2}, etc.
%e A383177 Pattern of numbers in row a(n) of A275280:
%e A383177   Level r^0                    Level r^1               Level r^2
%e A383177   1,   p,     p^2,  p^3   |    r,   p*r,   p^2*r   |   r^2
%e A383177   q,   p*q,   p^2*q       |    q*r, p*q*r          |
%e A383177   q^2, p*q^2;             |
%e A383177 Example: k = 1001 = 7*11*13
%e A383177     1,   7,  49, 343   |    13,   91, 637   |   169
%e A383177    11,  77, 539        |   143, 1001        |
%e A383177   121, 847             |
%t A383177 f[om_, lm_ : 0] := Block[{f, i, j, k, nn, w}, i = Abs[om]; j = 1;
%t A383177   If[lm == 0, nn = Times @@ Prime@ Range[i], nn = Abs[lm]]; w = ConstantArray[1, i];
%t A383177   Union@ Reap[Do[
%t A383177     While[Set[k, Times @@ Map[Prime, Accumulate@w]]; k <= nn,
%t A383177       If[Or[k == 1, Union[#2] == #1 - 1 & @@
%t A383177         TakeDrop[Map[Floor@Log[#, k] &, FactorInteger[k][[All, 1]] ], 1] ],
%t A383177         Sow[k]];
%t A383177       j = 1; w[[-j]]++];
%t A383177       If[j == i, Break[], j++; w[[-j]]++;
%t A383177         w = PadRight[w[[;; -j]], i, 1]], {n, Infinity}] ][[-1, 1]] ];
%t A383177 f[3, 20000]
%Y A383177 Cf. A005117, A007304, A010846, A162306, A381250.
%Y A383177 Intersection of A380995 and A382022.
%K A383177 nonn
%O A383177 1,1
%A A383177 _Michael De Vlieger_, Apr 21 2025