This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383179 #7 May 16 2025 00:55:47 %S A383179 101007559,112442377,145352341,370621421,392748073,396181519, %T A383179 403811399,496492847,510478561,530733733,540954893,545683979, %U A383179 552435703,578262127,580407131,585416939,590534717,594163571,620435209,625790521,633456391,635140369,643418423,651300233 %N A383179 Numbers k such that omega(k) = 5 and p^omega(k) < k^(1/5) < lpf(k)^(omega(k)+1) for all primes p | k such that p > lpf(k), where lpf = A020639(k). %C A383179 A010846(a(n)) >= 176. %H A383179 Michael De Vlieger, <a href="/A383179/b383179.txt">Table of n, a(n) for n = 1..10000</a> %H A383179 Michael De Vlieger, <a href="/A383179/a383179.png">Plot prime(i) | a(n) at (x,y) = (n,i)</a> for n = 1..2048, 8X vertical exaggeration. The green bar at the bottom of the graph emphasizes the x axis that rides on the top edge of the bar. %e A383179 Table of n, a(n), prime decomposition of a(n), and A010846(n) = c(n) for n = 1..12 and n = 209 (the smallest term with c(n) = 176): %e A383179 n a(n) facs(a(n)) c(a(n)) %e A383179 -------------------------------------- %e A383179 1 101007559 23*41*43*47*53 180 %e A383179 2 112442377 23*41*43*47*59 182 %e A383179 3 145352341 23*43*47*53*59 179 %e A383179 4 370621421 29*53*59*61*67 179 %e A383179 5 392748073 29*53*59*61*71 180 %e A383179 6 396181519 31*53*59*61*67 179 %e A383179 7 403811399 29*53*59*61*73 181 %e A383179 8 496492847 29*59*61*67*71 179 %e A383179 9 510478561 29*59*61*67*73 179 %e A383179 10 530733733 31*59*61*67*71 179 %e A383179 11 540954893 29*59*61*71*73 179 %e A383179 12 545683979 31*59*61*67*73 179 %e A383179 209 3433936673 41*83*97*101*103 176 %t A383179 f[om_, lm_ : 0] := Block[{f, i, j, k, nn, w}, i = Abs[om]; j = 1; %t A383179 If[lm == 0, nn = Times @@ Prime@ Range[i], nn = Abs[lm]]; w = ConstantArray[1, i]; %t A383179 Union@ Reap[Do[ %t A383179 While[Set[k, Times @@ Map[Prime, Accumulate@w]]; k <= nn, %t A383179 If[Or[k == 1, Union[#2] == #1 - 1 & @@ %t A383179 TakeDrop[Map[Floor@Log[#, k] &, FactorInteger[k][[All, 1]] ], 1] ], %t A383179 Sow[k]]; %t A383179 j = 1; w[[-j]]++]; %t A383179 If[j == i, Break[], j++; w[[-j]]++; %t A383179 w = PadRight[w[[;; -j]], i, 1]], {n, Infinity}] ][[-1, 1]] ]; %t A383179 f[5, 10^9, 5] %Y A383179 Cf. A010846, A020639, A162306, A383177, A383178. %K A383179 nonn %O A383179 1,1 %A A383179 _Michael De Vlieger_, May 09 2025