cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383195 Primes that are the concatenation of three primes, of which two are equal.

This page as a plain text file.
%I A383195 #20 Apr 29 2025 13:27:48
%S A383195 223,227,233,277,337,353,373,557,577,727,733,757,773,1733,1777,1933,
%T A383195 2213,2237,2243,2267,2273,2297,2333,2377,3313,3319,3323,3329,3331,
%U A383195 3343,3347,3359,3361,3371,3373,3389,3413,3433,3533,3593,3613,3673,3733,3793,3833,4133,4177,4733,5333,5519,5531,5573
%N A383195 Primes that are the concatenation of three primes, of which two are equal.
%C A383195 Complement of A100633 in A100607.
%H A383195 Robert Israel, <a href="/A383195/b383195.txt">Table of n, a(n) for n = 1..10000</a>
%e A383195 a(3) = 233 is a term because 233 is prime and is the concatenation of the primes 2, 3 and 3, of which two are equal.
%p A383195 filter:= proc(n) local m, i, j, ni, nj, np, n3;
%p A383195  if not isprime(n) then return false fi;
%p A383195  m:= ilog10(n);
%p A383195  for i from 1 to m-1 do
%p A383195    ni:= n mod 10^i;
%p A383195    if ni < 10^(i-1) or not isprime(ni) then next fi;
%p A383195    np:= (n-ni)/10^i;
%p A383195    for j from 1 to m-i do
%p A383195      nj:= np mod 10^j;
%p A383195      if nj < 10^(j-1) then next fi;
%p A383195      n3:= (np-nj)/10^j;
%p A383195      if nops({ni, nj, n3})<3 and isprime(nj) and isprime(n3) then return true fi;
%p A383195  od od;
%p A383195  false
%p A383195 end proc:
%p A383195 select(filter, [seq(i,i=3..10000,2)]);
%Y A383195 Cf. A100607, A100633.
%K A383195 nonn
%O A383195 1,1
%A A383195 _Robert Israel_, Apr 28 2025