This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383195 #20 Apr 29 2025 13:27:48 %S A383195 223,227,233,277,337,353,373,557,577,727,733,757,773,1733,1777,1933, %T A383195 2213,2237,2243,2267,2273,2297,2333,2377,3313,3319,3323,3329,3331, %U A383195 3343,3347,3359,3361,3371,3373,3389,3413,3433,3533,3593,3613,3673,3733,3793,3833,4133,4177,4733,5333,5519,5531,5573 %N A383195 Primes that are the concatenation of three primes, of which two are equal. %C A383195 Complement of A100633 in A100607. %H A383195 Robert Israel, <a href="/A383195/b383195.txt">Table of n, a(n) for n = 1..10000</a> %e A383195 a(3) = 233 is a term because 233 is prime and is the concatenation of the primes 2, 3 and 3, of which two are equal. %p A383195 filter:= proc(n) local m, i, j, ni, nj, np, n3; %p A383195 if not isprime(n) then return false fi; %p A383195 m:= ilog10(n); %p A383195 for i from 1 to m-1 do %p A383195 ni:= n mod 10^i; %p A383195 if ni < 10^(i-1) or not isprime(ni) then next fi; %p A383195 np:= (n-ni)/10^i; %p A383195 for j from 1 to m-i do %p A383195 nj:= np mod 10^j; %p A383195 if nj < 10^(j-1) then next fi; %p A383195 n3:= (np-nj)/10^j; %p A383195 if nops({ni, nj, n3})<3 and isprime(nj) and isprime(n3) then return true fi; %p A383195 od od; %p A383195 false %p A383195 end proc: %p A383195 select(filter, [seq(i,i=3..10000,2)]); %Y A383195 Cf. A100607, A100633. %K A383195 nonn %O A383195 1,1 %A A383195 _Robert Israel_, Apr 28 2025