This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383206 #11 Apr 19 2025 10:04:05 %S A383206 1,0,1,0,3,1,0,11,9,1,0,49,71,18,1,0,257,575,245,30,1,0,1539,4957, %T A383206 3120,625,45,1,0,10299,45829,39697,11480,1330,63,1,0,75905,454015, %U A383206 517790,201677,33250,2506,84,1,0,609441,4804191,6999785,3513762,770007,81774,4326,108,1 %N A383206 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = Sum_{j=k..n} 2^(n-j) * Stirling2(n,j) * Stirling2(j,k). %F A383206 E.g.f. of column k (with leading zeros): (exp(f(x)) - 1)^k / k! with f(x) = (exp(2*x) - 1)/2. %e A383206 Triangle starts: %e A383206 1; %e A383206 0, 1; %e A383206 0, 3, 1; %e A383206 0, 11, 9, 1; %e A383206 0, 49, 71, 18, 1; %e A383206 0, 257, 575, 245, 30, 1; %e A383206 0, 1539, 4957, 3120, 625, 45, 1; %e A383206 0, 10299, 45829, 39697, 11480, 1330, 63, 1; %e A383206 ... %o A383206 (PARI) T(n, k) = sum(j=k, n, 2^(n-j)*stirling(n, j, 2)*stirling(j, k, 2)); %Y A383206 Columns k=0..3 give A000007, A004211 (for n > 0), A383207, A383208. %Y A383206 Row sums give A380228. %Y A383206 Cf. A130191. %K A383206 nonn,tabl %O A383206 0,5 %A A383206 _Seiichi Manyama_, Apr 19 2025