This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383209 #26 Apr 27 2025 15:06:20 %S A383209 0,0,0,0,0,3,0,0,0,0,0,3,0,0,5,0,0,3,9,0,5,0,0,0,3,0,0,0,7,0,3,5,15,0, %T A383209 0,0,0,7,3,9,0,0,0,5,0,3,7,21,0,0,5,9,15,0,0,3,0,0,0,0,0,3,9,27,0,7,0, %U A383209 0,0,3,5,15,0,0,9,0,0,3,11,33,0,0,0,7,0,3,9,0,0,5,25,0,11,3,39 %N A383209 Irregular triangle read by rows in which row n lists the odd divisors m of n such that there is a divisor d of n with d < m < 2*d, or 0 if such odd divisors do not exist. %e A383209 For n = 1..17 every row of the triangle has only one term. %e A383209 For n = 18..30 the triangle is as shown below: %e A383209 3, 9; %e A383209 0; %e A383209 5; %e A383209 0; %e A383209 0; %e A383209 0; %e A383209 3; %e A383209 0; %e A383209 0; %e A383209 0; %e A383209 7; %e A383209 0; %e A383209 3, 5, 15; %e A383209 ... %e A383209 For n = 30 there are three odd divisors m of 30 such that there is a divisor d of 30 with d < m < 2*d. Those odd divisors are 3, 5 and 15 as shown below: %e A383209 d < m < 2*d %e A383209 -------------------- %e A383209 1 2 %e A383209 2 3 4 %e A383209 3 5 6 %e A383209 5 10 %e A383209 6 12 %e A383209 10 15 20 %e A383209 15 30 %e A383209 30 60 %e A383209 . %e A383209 So the 30th row of the triangle is [3, 5, 15]. %e A383209 . %e A383209 For n = 78 there are two odd divisors m of 78 such that there is a divisor d of 78 with d < m < 2*d. Those odd divisors are 3 and 39 as shown below: %e A383209 d < m < 2*d %e A383209 -------------------- %e A383209 1 2 %e A383209 2 3 4 %e A383209 3 6 %e A383209 6 12 %e A383209 13 26 %e A383209 26 39 52 %e A383209 39 78 %e A383209 78 156 %e A383209 . %e A383209 Note that 13 is an odd divisor of 78 but 13 does not qualify. %e A383209 So the 78th row of the triangle is [3, 39]. %t A383209 row[n_] := Module[{d = Partition[Divisors[n], 2, 1], r}, r = Select[d, OddQ[#[[2]]] && #[[2]] < 2*#[[1]] &][[;; , 2]]; If[r == {}, {0}, r]]; Array[row, 80] // Flatten (* _Amiram Eldar_, Apr 19 2025 *) %Y A383209 Also zeros and odd terms of A379461. %Y A383209 Row sums give A383147. %Y A383209 The number of positive terms in row n is A239657(n). %Y A383209 Cf. A027750, A237593, A379288, A379374. %K A383209 nonn,tabf %O A383209 1,6 %A A383209 _Omar E. Pol_, Apr 19 2025