This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383211 #24 May 28 2025 14:19:37 %S A383211 4,8,9,25,27,32,49,64,121,125,128,169,243,289,343,361,529,729,841,961, %T A383211 1024,1331,1369,1681,1849,2048,2187,2197,2209,2809,3125,3481,3721, %U A383211 4489,4913,5041,5329,6241,6859,6889,7921,8192,9409,10201,10609,11449,11881,12167 %N A383211 Numbers of the form p^e where p is prime and e > 1 is squarefree. %H A383211 Michael De Vlieger, <a href="/A383211/b383211.txt">Table of n, a(n) for n = 1..10000</a> %F A383211 Sum_{n>=1} 1/a(n) = Sum_{n>=2} P(A005117(n)) = 0.68983147577186859321..., where P(s) is the prime zeta function. - _Amiram Eldar_, May 28 2025 %t A383211 lmt = 12500; Sort[ Select[ Flatten[ Table[ Prime[p]^If[ SquareFreeQ@ exp, exp, 0], {p, PrimePi@ Sqrt@ lmt}, {exp, 2, Log[Prime@ p, lmt]} ]], # != 1 &]] (* _Robert G. Wilson v_, May 05 2025 *) %o A383211 (SageMath) %o A383211 def A383211List(upto: int) -> list[int]: %o A383211 L = [] %o A383211 for p in prime_range(2, upto + 1): %o A383211 E = A383266(upto, p) %o A383211 for e in range(2, E+1): %o A383211 if is_squarefree(e): %o A383211 n = p^e %o A383211 if n <= upto: %o A383211 L.append(n) %o A383211 return sorted(L) %o A383211 print(A383211List(12222)) %o A383211 (PARI) isok(k) = {my(e = isprimepower(k)); e > 1 && issquarefree(e);} \\ _Amiram Eldar_, May 28 2025 %o A383211 (Python) %o A383211 from math import isqrt %o A383211 from sympy import mobius, integer_log, primerange %o A383211 def A383211(n): %o A383211 def bisection(f,kmin=0,kmax=1): %o A383211 while f(kmax) > kmax: kmax <<= 1 %o A383211 kmin = kmax >> 1 %o A383211 while kmax-kmin > 1: %o A383211 kmid = kmax+kmin>>1 %o A383211 if f(kmid) <= kmid: %o A383211 kmax = kmid %o A383211 else: %o A383211 kmin = kmid %o A383211 return kmax %o A383211 def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) %o A383211 def f(x): return n+x-sum(g(integer_log(x,p)[0])-1 for p in primerange(isqrt(x)+1)) %o A383211 return bisection(f,n,n) # _Chai Wah Wu_, May 28 2025 %Y A383211 Cf. A005117, A383266, A144338, A053810. %K A383211 nonn %O A383211 1,1 %A A383211 _Peter Luschny_, Apr 21 2025