This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383224 #53 May 07 2025 05:31:00 %S A383224 8,8,4,4,8,1,8,3,3,9,6,3,5,2,3,8,8,5,1,9,6,5,3,6,1,5,3,8,7,0,6,5,1,1, %T A383224 6,8,5,8,8,6,6,7,3,3,2,6,3,8,7,1,1,3,3,5,1,8,1,8,3,9,2,8,6,5,7,7,8,6, %U A383224 0,4,5,7,1,6,5,2,7,8,8,6,3,4,3,1,2,9,5,1,0,2,2,9,5,2,4,5,2,5,4,7,0,5,6,0,1 %N A383224 Decimal expansion Sum_{p primes} log(p)^2*p^2/(p^2-1)^2. %H A383224 Bill Allombert, <a href="https://pari.math.u-bordeaux.fr/Scripts/sumeulerratlog.gp">SumEulerLog procedure</a>, Pari gp procedures. %F A383224 Equals 6*(Pi^2*zeta''(2)-6*zeta'(2)^2)/Pi^4. %F A383224 Equals 6*(Pi^2*zeta''(2)-6*(zeta[2]*(gamma + log(2*Pi) - 12*log(A)))^2)/Pi^4 where A is Glaisher-Kinkelin constant A074962. %F A383224 Equals zeta''(2)/zeta(2)-zeta'(2)^2/zeta(2)^2 see A201994, A073002 and A013661. %e A383224 0.8844818339635238851965361... %p A383224 Zeta(2,2)/Zeta(2) -Zeta(1,2)^2/Zeta(2)^2 ; evalf(%) ; # _R. J. Mathar_, May 07 2025 %t A383224 RealDigits[(6 (-6 Zeta'[2]^2 + Pi^2 Zeta''[2]))/Pi^4, 10, 105][[1]] %o A383224 (PARI) %o A383224 /* Procedure by Bill Allombert */ %o A383224 default(realprecision, 105); %o A383224 SumEulerLog(f,s=1,a=2,d=1)= %o A383224 { %o A383224 my(p=variable(f)); %o A383224 if(type(d)!="t_INT",error("incorrect type in SumEulerLog")); %o A383224 if (d<0, %o A383224 d=-d; %o A383224 for(i=1,d, f=deriv(f)*p); %o A383224 (-1)^d*intnum(t=1,[oo,log(2)*s],(t-1)^(d-1)*sumeulerrat(f,t*s,a))/gamma(d) %o A383224 ,d==0, %o A383224 sumeulerrat(f,s,a) %o A383224 ,d>0, %o A383224 my(S=0,v); %o A383224 my(prec=getlocalbitprec()); %o A383224 f=subst(f,'p,1/p)+O(p^prec); %o A383224 for(i=1,d, f=intformal(f/p)); %o A383224 v = valuation(f,p); %o A383224 f = truncate(f); %o A383224 for(i=v,prec/(v-1), %o A383224 S += polcoef(f,i)*derivnum(t=1,sumeulerrat(1/p,t*i*s,a),d)); %o A383224 (-1)^d*S); %o A383224 } %o A383224 SumEulerLog(p^2/(p^2-1)^2,,,2) %Y A383224 Cf. A345364. %K A383224 nonn,cons %O A383224 0,1 %A A383224 _Artur Jasinski_, Apr 27 2025