cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A383283 Indices of record low-water marks of the sequence abs((cos n)^n).

Original entry on oeis.org

0, 1, 2, 5, 8, 11, 33, 55, 77, 99, 121, 143, 165, 187, 190, 209, 212, 234, 256, 278, 300, 322, 344, 366, 633, 655, 677, 699, 721, 1032, 1054, 1076, 1387, 1409, 1431, 1764, 2119, 2474, 2829, 3184, 3539, 3894, 4249, 4604, 4959, 5314, 5669, 6024, 6379, 6734, 7089, 7444, 7799, 8154, 8509, 8864, 9219, 9574, 9929, 10284
Offset: 0

Views

Author

Jwalin Bhatt, Apr 28 2025

Keywords

Examples

			The first few values of abs((cos n)^n) are:
abs(cos(0)^0) = 1
abs(cos(1)^1) = 0.540302305868139
abs(cos(2)^2) = 0.173178189568194
abs(cos(3)^3) = 0.970276937921503
abs(cos(4)^4) = 0.182542548055270
abs(cos(5)^5) = 0.001836568887601
abs(cos(6)^6) = 0.783591241730686
abs(cos(7)^7) = 0.138422055397017
abs(cos(8)^8) = 0.000000200865224
abs(cos(9)^9) = 0.432737211396127
and the record low points are at n = 0, 1, 2, 5, 8, ...
		

Crossrefs

Programs

  • Mathematica
    Module[{x, y, runningMin = 1.1, positions = {}},
      x = Range[0,10^6];y = Abs[Cos[x]^x];
      Do[If[y[[i]] < runningMin,runningMin = y[[i]];AppendTo[positions, i-1];],{i, Length[y]}];
      positions
    ]
Showing 1-1 of 1 results.