cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383231 Expansion of e.g.f. f(x) * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5).

This page as a plain text file.
%I A383231 #8 Apr 20 2025 08:57:13
%S A383231 0,1,7,83,1394,30330,810756,25710012,943434288,39324264624,
%T A383231 1835297984160,94813760519136,5371462318747392,331125138305434368,
%U A383231 22065681276731119104,1580617232453691210240,121117633854691036502016,9885823380533972300470272,856279708828545483688808448
%N A383231 Expansion of e.g.f. f(x) * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5).
%F A383231 a(n) = Sum_{k=1..n} k * 5^(n-k) * |Stirling1(n,k)|.
%F A383231 a(n) = 5^(n-1) * n! * Sum_{k=0..n-1} (-1)^k * binomial(-1/5,k)/(n-k).
%F A383231 a(n) = (10*n-13) * a(n-1) - (5*n-9)^2 * a(n-2) for n > 1.
%o A383231 (PARI) a(n) = sum(k=1, n, k*5^(n-k)*abs(stirling(n, k, 1)));
%Y A383231 Cf. A383232, A383233, A383234.
%Y A383231 Cf. A004041, A024216, A024382.
%K A383231 nonn
%O A383231 0,3
%A A383231 _Seiichi Manyama_, Apr 20 2025