cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383234 Expansion of e.g.f. f(x)^4 * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5).

This page as a plain text file.
%I A383234 #7 Apr 20 2025 08:40:53
%S A383234 0,1,13,218,4646,121080,3741144,133863792,5447294352,248518603584,
%T A383234 12566268267840,697632464382336,42189230206182528,2760816706845539328,
%U A383234 194381535085933095936,14652311175996819978240,1177370323796943823325184,100466288729505689717809152
%N A383234 Expansion of e.g.f. f(x)^4 * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5).
%F A383234 a(n) = Sum_{k=1..n} k * 4^(k-1) * 5^(n-k) * |Stirling1(n,k)|.
%F A383234 a(n) = 5^(n-1) * n! * Sum_{k=0..n-1} (-1)^k * binomial(-4/5,k)/(n-k).
%F A383234 a(n) = (10*n-7) * a(n-1) - (5*n-6)^2 * a(n-2) for n > 1.
%o A383234 (PARI) a(n) = sum(k=1, n, k*4^(k-1)*5^(n-k)*abs(stirling(n, k, 1)));
%Y A383234 Cf. A383231, A383232, A383233.
%K A383234 nonn
%O A383234 0,3
%A A383234 _Seiichi Manyama_, Apr 20 2025