This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383235 #20 May 06 2025 08:46:00 %S A383235 1,0,1,0,0,1,0,0,2,1,0,0,4,4,1,0,0,8,12,8,1,0,0,16,32,44,12,1,0,0,32, %T A383235 80,208,92,18,1,0,0,64,192,912,576,200,24,1,0,0,128,448,3840,3216, %U A383235 1776,344,32,1,0,0,256,1024,15808,16704,13872,3840,600,40,1 %N A383235 Triangle read by rows: T(n,k) = 2*floor(k/2)*T(n-1,k) + T(n-1,k-1), 0 <= k <= n. %C A383235 Row sums give A007472. %C A383235 The recurrence is analogous to that of Stirling numbers of the 2nd kind (A048993), but with a parity constraint. For even columns, T(n+1, 2*k) = 2*k*T(n, 2*k) + T(n, 2*k-1); for odd columns, T(n+1, 2*k+1) = 2*k*T(n, 2*k+1) + T(n, 2*k). %C A383235 T(n,k) appear as coefficients in the following polynomials (which themselves are coefficients of t^n in the bivariate e.g.f.: %C A383235 P_0(x) = 1 %C A383235 P_1(x) = 0 + x %C A383235 P_2(x) = 0 + 0 + x^2 %C A383235 P_3(x) = 0 + 0 + 2x^2 + x^3 %C A383235 P_4(x) = 0 + 0 + 4x^2 + 4x^3 + x^4 %C A383235 P_5(x) = 0 + 0 + 8x^2 + 12x^3 + 8x^4 + x^5 %C A383235 P_6(x) = 0 + 0 + 16x^2 + 32x^3 + 44x^4 + 12x^5 + x^6 %C A383235 P_n(1) gives A007472. %C A383235 T(n,k) enumerates the number of ways to partition n labeled objects in k compartments of urns with two compartments each with the following constraints: %C A383235 - you can initially place a marble in any compartment of any urn %C A383235 - you cannot use the same compartment in an urn again until you've used its other compartment %C A383235 - you can freely place objects in any compartment of urns where both compartments are already used %C A383235 - you cannot open a new urn until both compartments of all previously used urns are filled %C A383235 Examples: %C A383235 For T(3,2) we have two ways to place the objects in two compartments of a single urn %C A383235 - {13|2} %C A383235 - {1|23} %C A383235 For T(3,3) we have one way to place each object in its own compartment (2 urns, 3 compartments used): %C A383235 - {1|2}{3|} %C A383235 For 4 objects we have: %C A383235 - 4 cases for Z(4,2): %C A383235 {134|2} %C A383235 {14|23} %C A383235 {13|24} %C A383235 {1|234} %C A383235 - 4 cases for Z(4,3): %C A383235 {{13|2},{4|}} %C A383235 {{1|23},{4|}} %C A383235 {{14|2},{3|}} %C A383235 {{1|24},{3|}} %C A383235 - 1 case for Z(4,4): %C A383235 {{1|2}, {3|4}} %C A383235 Then A007472 counts the total number of ways to partition n labeled objects in such nonempty two-compartment urns. %H A383235 Ven Popov, <a href="https://www.wolframcloud.com/obj/vpopov0/Published/marray-recurrence-triangle.nb">m-arity Stirling like arrays and generalization of the Bell numbers</a> %F A383235 T(n, k) = 2*Floor(k/2)*T(n-1, k) + T(n-1, k-1), n > 0; T(0, k) = 0, k > 0; T(0, 0) = 1. %F A383235 E.g.f.: A[x_, t_] := x*(BesselK[0,x] + BesselK[1,x])*BesselI[0,x*Exp[t]] + x*(BesselI[1,x] - BesselI[0,x])*BesselK[0, x Exp[t]] where T(n,k) are the coefficients of x^k for t^n. The much simpler formula BesselI[0,x*Exp[t]] produces the same coefficients but with carrier alternating BesselI[0,x] and BesselI[1,x] functions at even and odd coefficients. %e A383235 The triangle T(n,k) begins: %e A383235 n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 %e A383235 0: 1 %e A383235 1: 0 1 %e A383235 2: 0 0 1 %e A383235 3: 0 0 2 1 %e A383235 4: 0 0 4 4 1 %e A383235 5: 0 0 8 12 8 1 %e A383235 6: 0 0 16 32 44 12 1 %e A383235 7: 0 0 32 80 208 92 18 1 %e A383235 8: 0 0 64 192 912 576 200 24 1 %e A383235 9: 0 0 128 448 3840 3216 1776 344 32 1 %e A383235 10: 0 0 256 1024 15808 16704 13872 3840 600 40 1 %e A383235 11: 0 0 512 2304 64256 82624 99936 36912 8640 920 50 1 %e A383235 12: 0 0 1024 5120 259328 394752 682240 321408 106032 16000 1420 60 1 %e A383235 ------------------------------------------------------------------------ %e A383235 Recurrence: %e A383235 S(5,3) = 2*Floor(3/2)*S(4,3) + S(4,2) = 2*4 + 4 = 12. %e A383235 S(5,4) = 2*Floor(4/2)*S(4,4) + S(4,3) = 4*1 + 4 = 8. %t A383235 Z[0,0,m_]=1; %t A383235 Z[0,k_,m_]:=0/;k>0; %t A383235 Z[n_,0,m_]:=0/;n>0; %t A383235 Z[n_,k_,m_]:=Z[n,k,m]=m*Floor[k/m]*Z[n-1,k,m]+Z[n-1,k-1,m]; %t A383235 Flatten[Table[Z[n,k,2],{n,0,12},{k,0,n}]] %Y A383235 Cf. A048993. Row sums give A007472. Column T(n+2,2) gives A000079(n). Column T(n+2,3) gives A001787(n). Column T(n+2,4) gives A100575(n). Column T(n+5,5)*4 gives A158681(n). T(n+1,n) gives A007590(n). %K A383235 nonn,tabl %O A383235 0,9 %A A383235 _Ven Popov_, Apr 20 2025