This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383238 #29 Jul 24 2025 18:24:20 %S A383238 1,2,3,1,2,4,1,2,3,1,2,1,2,3,1,2,5,1,2,3,1,2,1,2,3,4,1,2,1,2,3,1,2,1, %T A383238 2,3,1,2,4,1,2,3,1,2,1,2,3,1,2,1,2,3,1,2,4,1,2,3,1,2,1,2,3,1,2,1,2,3, %U A383238 1,2,4,1,2,3,1,2,1,2,3,1,2,5,1,2,3,1,2,4,1,2,3,1,2,1,2,3,1,2,1,2,3,1,2,4,1,2,3,1,2,1,2,3,1,2,6,1,2,3,1,2 %N A383238 A sequence constructed by greedily sampling the Poisson distribution for parameter value 1, 1/(e*(i-1)!) to minimize discrepancy selecting the smallest value in case of ties. %C A383238 The geometric mean approaches A382095 = exp(Sum_{k>=2} log(k)/(k-1)!) in the limit. %H A383238 Jwalin Bhatt, <a href="/A383238/b383238.txt">Table of n, a(n) for n = 1..10000</a> %H A383238 Wikipedia, <a href="https://en.wikipedia.org/wiki/Poisson_distribution">Poisson distribution</a> %e A383238 Let p(k) denote the probability of k and c(k) denote the count of occurrences of k so far, then the expected occurrences of k at n-th step are given by n*p(k). %e A383238 We subtract the actual occurrences c(k) from the expected occurrences and pick the one with the highest value. %e A383238 | n | n*p(1) - c(1) | n*p(2) - c(2) | n*p(3) - c(3) | choice | %e A383238 |---|---------------|---------------|---------------|--------| %e A383238 | 1 | 0.367 | 0.367 | 0.183 | 1 | %e A383238 | 2 | -0.264 | 0.735 | 0.367 | 2 | %e A383238 | 3 | 0.103 | 0.103 | 0.551 | 3 | %e A383238 | 4 | 0.471 | 0.471 | -0.264 | 1 | %e A383238 | 5 | -0.160 | 0.839 | -0.080 | 2 | %t A383238 probCountDiff[j_,k_,count_]:=N[k/(E*Factorial[j-1])]-Lookup[count,j,0] %t A383238 samplePDF[n_]:=Module[{coeffs,unreachedVal,counts,k,probCountDiffs,mostProbable}, %t A383238 coeffs=ConstantArray[0,n];unreachedVal=1;counts=<||>; %t A383238 Do[probCountDiffs=Table[probCountDiff[i,k,counts],{i,1,unreachedVal}]; %t A383238 mostProbable=First@FirstPosition[probCountDiffs,Max[probCountDiffs]]; %t A383238 If[mostProbable==unreachedVal,unreachedVal++];coeffs[[k]]=mostProbable; %t A383238 counts[mostProbable]=Lookup[counts,mostProbable,0]+1;,{k,1,n}];coeffs] %t A383238 A383238=samplePDF[120] %Y A383238 Cf. A381617, A382093, A382095, A382961. %K A383238 nonn %O A383238 1,2 %A A383238 _Jwalin Bhatt_, Apr 20 2025