This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383243 #16 May 15 2025 21:41:22 %S A383243 5,29,307,883,1747,4001,6067,26227,108883,152083,424481,311347,396883, %T A383243 848201,580627,1713709,1814509,864883,5092973,3046789,3386989,1664083, %U A383243 2581961,2196307,2304307,2377747,6955309,3526867,4088467,20916053,4796083,7339361 %N A383243 Primes of the form p(k)*p(k+1)*(p(k+1) - p(k)) - 1 sorted by increasing k. %C A383243 Conjecture: there are infinitely many such primes. %p A383243 q:= 2; R:= NULL: count:= 0: %p A383243 while count < 100 do %p A383243 p:= q; %p A383243 q:= nextprime(q); %p A383243 v:= p*q*(q-p)-1; %p A383243 if isprime(v) then R:= R,v; count:= count+1 fi; %p A383243 od: %p A383243 R; # _Robert Israel_, May 11 2025 %t A383243 z = 200; p[n_] := Prime[n]; %t A383243 f[n_] := p[n]*p[n + 1]*(p[n + 1] - p[n]) %t A383243 t1 = Table[f[n] - 1, {n, 1, z}]; (* A383241 *) %t A383243 t2 = Table[f[n] + 1, {n, 1, z}]; (* A383242 *) %t A383243 Select[t1, PrimeQ[#] &] (* A383243 *) %t A383243 Select[t2, PrimeQ[#] &] (* A383244 *) %Y A383243 Cf. A000042, A383242, A383244. %Y A383243 Primes in A383241. %K A383243 nonn %O A383243 1,1 %A A383243 _Clark Kimberling_, May 07 2025