This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383244 #16 May 15 2025 21:41:03 %S A383244 7,31,71,647,4003,6883,3527,14947,34603,20807,23327,173347,73727, %T A383244 503869,103967,145799,450403,194687,669283,848203,1193443,1775563, %U A383244 649799,1976803,2088547,2131243,4687069,2534947,2581963,5338237,3250123,3411043,1555847,5346763 %N A383244 Primes of the form p(k)*p(k+1)*(p(k+1) - p(k)) + 1 sorted by increasing k. %C A383244 Conjecture: there are infinitely many such primes. %p A383244 =q:= 2; R:= NULL: count:= 0: %p A383244 while count < 100 do %p A383244 p:= q; %p A383244 q:= nextprime(q); %p A383244 v:= p*q*(q-p)+1; %p A383244 if isprime(v) then R:= R,v; count:= count+1 fi; %p A383244 od: %p A383244 R; # _Robert Israel_, May 11 2025 %t A383244 z = 200; p[n_] := Prime[n]; %t A383244 f[n_] := p[n]*p[n + 1]*(p[n + 1] - p[n]) %t A383244 t1 = Table[f[n] - 1, {n, 1, z}]; (* A383241 *) %t A383244 t2 = Table[f[n] + 1, {n, 1, z}]; (* A383242 *) %t A383244 Select[t1, PrimeQ[#] &] (* A383243 *) %t A383244 Select[t2, PrimeQ[#] &] (* A383244 *) %o A383244 (PARI) select(isprime, vector(200, k, prime(k)*prime(k+1)*(prime(k+1) - prime(k)) + 1)) \\ _Michel Marcus_, May 12 2025 %Y A383244 Cf. A000042, A383241, A383243. %Y A383244 Primes in A383242. %K A383244 nonn %O A383244 1,1 %A A383244 _Clark Kimberling_, May 07 2025