cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383263 Union of prime powers (A246655) and numbers that are not squarefree (A013929).

This page as a plain text file.
%I A383263 #18 Apr 30 2025 13:53:02
%S A383263 2,3,4,5,7,8,9,11,12,13,16,17,18,19,20,23,24,25,27,28,29,31,32,36,37,
%T A383263 40,41,43,44,45,47,48,49,50,52,53,54,56,59,60,61,63,64,67,68,71,72,73,
%U A383263 75,76,79,80,81,83,84,88,89,90,92,96,97,98,99,100,101,103
%N A383263 Union of prime powers (A246655) and numbers that are not squarefree (A013929).
%C A383263 Union of A013929 and A000040. - _Chai Wah Wu_, Apr 27 2025
%p A383263 with(NumberTheory):
%p A383263 IsPrimePower := n -> nops(PrimeFactors(n)) = 1:
%p A383263 IsA383263 := n -> IsPrimePower(n) or not IsSquareFree(n):
%p A383263 select(IsA383263, [seq(1..104)]);
%t A383263 Select[Range[120], Or[PrimePowerQ[#], ! SquareFreeQ[#]] &] (* _Michael De Vlieger_, Apr 27 2025 *)
%o A383263 (SageMath)
%o A383263 def isA383263(n: int) -> bool: return is_prime_power(n) or not is_squarefree(n)
%o A383263 (PARI)
%o A383263 isok(k) = isprimepower(k) || !issquarefree(k);
%o A383263 (Python)
%o A383263 from math import isqrt
%o A383263 from sympy import mobius, primepi
%o A383263 def A383263(n):
%o A383263     def f(x): return int(n+x+sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1))-primepi(x))
%o A383263     m, k = n, f(n)
%o A383263     while m != k: m, k = k, f(k)
%o A383263     return m # _Chai Wah Wu_, Apr 27 2025
%Y A383263 Cf. A000040, A013929, A246655.
%Y A383263 Essentially the same as A363597.
%K A383263 nonn
%O A383263 1,1
%A A383263 _Peter Luschny_, Apr 27 2025