This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383263 #18 Apr 30 2025 13:53:02 %S A383263 2,3,4,5,7,8,9,11,12,13,16,17,18,19,20,23,24,25,27,28,29,31,32,36,37, %T A383263 40,41,43,44,45,47,48,49,50,52,53,54,56,59,60,61,63,64,67,68,71,72,73, %U A383263 75,76,79,80,81,83,84,88,89,90,92,96,97,98,99,100,101,103 %N A383263 Union of prime powers (A246655) and numbers that are not squarefree (A013929). %C A383263 Union of A013929 and A000040. - _Chai Wah Wu_, Apr 27 2025 %p A383263 with(NumberTheory): %p A383263 IsPrimePower := n -> nops(PrimeFactors(n)) = 1: %p A383263 IsA383263 := n -> IsPrimePower(n) or not IsSquareFree(n): %p A383263 select(IsA383263, [seq(1..104)]); %t A383263 Select[Range[120], Or[PrimePowerQ[#], ! SquareFreeQ[#]] &] (* _Michael De Vlieger_, Apr 27 2025 *) %o A383263 (SageMath) %o A383263 def isA383263(n: int) -> bool: return is_prime_power(n) or not is_squarefree(n) %o A383263 (PARI) %o A383263 isok(k) = isprimepower(k) || !issquarefree(k); %o A383263 (Python) %o A383263 from math import isqrt %o A383263 from sympy import mobius, primepi %o A383263 def A383263(n): %o A383263 def f(x): return int(n+x+sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1))-primepi(x)) %o A383263 m, k = n, f(n) %o A383263 while m != k: m, k = k, f(k) %o A383263 return m # _Chai Wah Wu_, Apr 27 2025 %Y A383263 Cf. A000040, A013929, A246655. %Y A383263 Essentially the same as A363597. %K A383263 nonn %O A383263 1,1 %A A383263 _Peter Luschny_, Apr 27 2025