This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383276 #12 Apr 26 2025 03:33:22 %S A383276 1,4,6,8,10,14,16,18,22,24,26,32,34,38,40,46,48,50,54,56,58,60,62,64, %T A383276 72,74,80,82,84,86,88,94,96,98,104,106,112,118,122,128,132,134,136, %U A383276 140,142,144,146,152,156,158,160,162,166,176,178,180,184,192,194,200 %N A383276 Numbers of the form A034444(k) * k. %C A383276 The sorted values of {abs(A298473(n))}. %C A383276 Numbers m that have a divisor d such that A034444(d) * d = m. %C A383276 All the terms above 1 are even since A034444(k) is even for k >= 2. %C A383276 A number m is a term if and only if either A007814(m) = A005087(m) or A007814(m) > A005087(m) + 1. %H A383276 Amiram Eldar, <a href="/A383276/b383276.txt">Table of n, a(n) for n = 1..10000</a> %H A383276 H. L. Abbott and M. V. Subbarao, <a href="https://doi.org/10.4153/CMB-1989-015-8">On the Distribution of the Sequence {nd*(n)}</a>, Canadian Mathematical Bulletin, Vol. 32, No. 1 (1989), pp. 105-108. %F A383276 a(n) = A383279(n) * A034444(A383279(n)). %t A383276 q[k_] := AnyTrue[Divisors[k], 2^PrimeNu[#] * # == k &]; Select[Range[200], q] %t A383276 (* second program: *) %t A383276 q[k_] := Module[{e = IntegerExponent[k, 2], w}, w = PrimeNu[k/2^e]; e > w + 1 || e == w]; Select[Range[200], q] %o A383276 (PARI) isok(k) = fordiv(k, d, if((1 << omega(d)) * d == k, return(1))); 0; %o A383276 (PARI) isok(k) = {my(e = valuation(k, 2), w = omega(k >> e)); e > w + 1 || e == w;} %Y A383276 The unitary analog of A036438. %Y A383276 Subsequences: A100484, A138929 \ {2}, A151821. %Y A383276 Cf. A005087, A007814, A034444, A298473, A383277 (characteristic function), A383278 (number of terms not exceeding n), A383279. %K A383276 nonn,easy %O A383276 1,2 %A A383276 _Amiram Eldar_, Apr 21 2025