cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383279 The unique solution to x * A034444(x) = A383276(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 6, 13, 16, 17, 19, 10, 23, 12, 25, 27, 14, 29, 15, 31, 32, 18, 37, 20, 41, 21, 43, 22, 47, 24, 49, 26, 53, 28, 59, 61, 64, 33, 67, 34, 35, 71, 36, 73, 38, 39, 79, 40, 81, 83, 44, 89, 45, 46, 48, 97, 50, 101, 51, 103, 52, 107, 54, 109
Offset: 1

Views

Author

Amiram Eldar, Apr 21 2025

Keywords

Comments

a(n) is the single divisor d of A383276(n) such that d * A034444(d) = A383276(n).
A permutation of the positive integers: the positive integers k sort by the value of k * A034444(k).

Crossrefs

Programs

  • Mathematica
    s[k_] := Module[{ds = Divisors[k], ans = Nothing}, Do[If[2^PrimeNu[d]*d == k, ans = d; Break[]], {d, ds}]; ans]; Array[s, 300]
    (* second program *)
    s[k_] := Module[{e = IntegerExponent[k, 2], o, om}, o = k/2^e; om = PrimeNu[o]; If[e == om, o, If[e > om + 1, 2^(e-om-1) * o, Nothing]]]; Array[s, 300]
  • PARI
    list(lim) = for(k = 1, lim, fordiv(k, d, if((1 << omega(d)) * d == k, print1(d, ", "); break)));
    
  • PARI
    list(lim) = {my(e, o, om); for(k = 1, lim, e = valuation(k, 2); o = k >> e; om = omega(o); if(e == om, print1(o, ", "), if(e > om + 1, print1((1 << (e-om-1)) * o, ", "))));}

Formula

a(n) * A034444(a(n)) = A383276(n).
Let m = A383276(n). Then, either A007814(m) = A005087(m) and then a(n) = A000265(m), or A007814(m) > A005087(m) + 1 and then a(n) = m / 2^(A005087(m)+1).