cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A386564 Decimal expansion of Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} ({x/y}*{y/z}*{z/x})^3 dx dy dz, where {w} is the fractional part of w.

Original entry on oeis.org

0, 0, 7, 7, 8, 8, 9, 5, 5, 0, 8, 4, 0, 9, 6, 6, 5, 2, 0, 5, 4, 2, 8, 3, 6, 0, 9, 6, 5, 9, 9, 2, 7, 1, 4, 1, 1, 9, 0, 1, 7, 1, 9, 6, 4, 8, 9, 2, 6, 6, 3, 2, 0, 8, 4, 1, 9, 1, 0, 2, 4, 4, 6, 9, 5, 8, 0, 0, 5, 3, 5, 9, 8, 6, 8, 2, 9, 2, 3, 4, 1, 2, 0, 4, 2, 2, 4, 9, 6, 9, 2, 9, 8, 5, 4, 8, 5, 7, 6, 5, 9, 9, 1, 7, 6
Offset: 0

Views

Author

Amiram Eldar, Jul 26 2025

Keywords

Examples

			0.00778895508409665205428360965992714119017196489266...
		

Crossrefs

Cf. A375901 (m=1), A383289 (m=2), this constant (m=3).

Programs

  • Mathematica
    RealDigits[1 - 3*(Zeta[2]+Zeta[3]+Zeta[4])/8 + 21*Zeta[6]/320 + 7*Zeta[8]/160 + Zeta[3]^2/40 + Zeta[2]*Zeta[3]/40 + Zeta[2]*Zeta[5]/20 + Zeta[3]*Zeta[4]/16 + Zeta[3]*Zeta[5]/20 + Zeta[4]*Zeta[5]/20, 10, 120, -1][[1]]
  • PARI
    1 - 3*(zeta(2)+zeta(3)+zeta(4))/8 + 21*zeta(6)/320 + 7*zeta(8)/160 + zeta(3)^2/40 + zeta(2)*zeta(3)/40 + zeta(2)*zeta(5)/20 + zeta(3)*zeta(4)/16 + zeta(3)*zeta(5)/20 + zeta(4)*zeta(5)/20

Formula

Equal 1 - 3*(zeta(2)+zeta(3)+zeta(4))/8 + 21*zeta(6)/320 + 7*zeta(8)/160 + zeta(3)^2/40 + zeta(2)*zeta(3)/40 + zeta(2)*zeta(5)/20 + zeta(3)*zeta(4)/16 + zeta(3)*zeta(5)/20 + zeta(4)*zeta(5)/20.
In general, Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} ({x/y}*{y/z}*{z/x})^m dx dy dz = 1 - 3*Sum_{j=1..m} zeta(j+1)/(2*(m+1)) + (Sum_{j=1..m} zeta(j+1))*(Sum_{j=1..m} (j+1)*zeta(j+2))/((m+1)^2*(m+2)).
Showing 1-1 of 1 results.