This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383308 #10 Apr 27 2025 09:09:37 %S A383308 1,1,2,3,4,4,8,6,10,13,15,13,31 %N A383308 Number of integer partitions of n that can be partitioned into sets with a common sum. %C A383308 Any strict partition can be partitioned into a single set, so we have a lower bound a(n) >= A000009(n). %e A383308 The multiset (3,2,2,1,1) has partition {{3},{1,2},{1,2}}, so is counted under a(9). %e A383308 The a(1) = 1 through a(9) = 13 partitions: %e A383308 (1) (2) (3) (4) (5) (6) (7) (8) (9) %e A383308 (11) (21) (22) (32) (33) (43) (44) (54) %e A383308 (111) (31) (41) (42) (52) (53) (63) %e A383308 (1111) (11111) (51) (61) (62) (72) %e A383308 (222) (421) (71) (81) %e A383308 (321) (1111111) (431) (333) %e A383308 (2211) (521) (432) %e A383308 (111111) (2222) (531) %e A383308 (3311) (621) %e A383308 (11111111) (3321) %e A383308 (32211) %e A383308 (222111) %e A383308 (111111111) %t A383308 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A383308 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A383308 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A383308 Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],And@@UnsameQ@@@#&&SameQ@@Total/@#&]]>0&]],{n,0,10}] %Y A383308 Twice-partitions of this type (into sets with a common sum) are counted by A279788. %Y A383308 Multiset partitions of this type are ranked by A326534 /\ A302478. %Y A383308 For distinct instead of equal sums we have A381992, see also A382077. %Y A383308 The complement is counted by A381994, ranks A381719. %Y A383308 Partitions of prime indices of this type are counted by A382080. %Y A383308 Normal multiset partitions of this type are counted by A382429, see A326518. %Y A383308 For constant instead of strict blocks we have A383093, ranks A383014. %Y A383308 A000041 counts integer partitions, strict A000009. %Y A383308 A001055 counts factorizations, strict A045778. %Y A383308 Set multipartitions: A089259, A116540, A270995, A296119, A318360. %Y A383308 Cf. A050320, A293511, A321455, A358914, A381633, A381717, A381993. %K A383308 nonn,more %O A383308 0,3 %A A383308 _Gus Wiseman_, Apr 25 2025