This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383310 #10 Apr 26 2025 15:27:20 %S A383310 1,1,1,2,1,3,1,5,2,3,1,8,1,3,3,9,1,8,1,8,3,3,1,20,2,3,5,8,1,12,1,19,3, %T A383310 3,3,24,1,3,3,20,1,12,1,8,8,3,1,46,2,8,3,8,1,20,3,20,3,3,1,38,1,3,8, %U A383310 37,3,12,1,8,3,12,1,67,1,3,8,8,3,12,1,46,9,3 %N A383310 Number of ways to choose a strict multiset partition of a factorization of n into factors > 1. %e A383310 The a(36) = 24 choices: %e A383310 {{2,2,3,3}} {{2},{2,3,3}} {{2},{3},{2,3}} %e A383310 {{2,2,9}} {{3},{2,2,3}} {{2},{3},{6}} %e A383310 {{2,3,6}} {{2,2},{3,3}} %e A383310 {{2,18}} {{2},{2,9}} %e A383310 {{3,3,4}} {{9},{2,2}} %e A383310 {{3,12}} {{2},{3,6}} %e A383310 {{4,9}} {{3},{2,6}} %e A383310 {{6,6}} {{6},{2,3}} %e A383310 {{36}} {{2},{18}} %e A383310 {{3},{3,4}} %e A383310 {{4},{3,3}} %e A383310 {{3},{12}} %e A383310 {{4},{9}} %t A383310 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A383310 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A383310 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A383310 Table[Sum[Length[Select[mps[y],UnsameQ@@#&]],{y,facs[n]}],{n,30}] %Y A383310 The case of a unique choice (positions of 1) is A008578. %Y A383310 This is the strict case of A050336. %Y A383310 For distinct strict blocks we have A050345. %Y A383310 For integer partitions we have A261049, strict case of A001970. %Y A383310 For strict blocks that are not necessarily distinct we have A296119. %Y A383310 Twice-partitions of this type are counted by A296122. %Y A383310 For normal multisets we have A317776, strict case of A255906. %Y A383310 A001055 counts factorizations, strict A045778. %Y A383310 A050320 counts factorizations into squarefree numbers, distinct A050326. %Y A383310 A281113 counts twice-factorizations, strict A296121, see A296118, A296120. %Y A383310 Cf. A000009, A005117, A045782, A050342, A279785, A293243, A293511, A302494, A316439, A358914, A381992, A382201. %K A383310 nonn %O A383310 1,4 %A A383310 _Gus Wiseman_, Apr 26 2025