A383311 Number of ways to choose a set multipartition (multiset of sets) of a factorization of n into factors > 1.
1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 7, 1, 3, 3, 7, 1, 7, 1, 7, 3, 3, 1, 16, 2, 3, 4, 7, 1, 12, 1, 12, 3, 3, 3, 20, 1, 3, 3, 16, 1, 12, 1, 7, 7, 3, 1, 33, 2, 7, 3, 7, 1, 16, 3, 16, 3, 3, 1, 34, 1, 3, 7, 22, 3, 12, 1, 7, 3, 12, 1, 49, 1, 3, 7, 7, 3, 12, 1, 33, 7, 3
Offset: 1
Keywords
Examples
The a(36) = 20 choices are: {{2,3,6}} {{2,3},{2,3}} {{2},{3},{2,3}} {{2},{2},{3},{3}} {{2,18}} {{2},{2,9}} {{2},{2},{9}} {{3,12}} {{2},{3,6}} {{2},{3},{6}} {{4,9}} {{3},{2,6}} {{3},{3},{4}} {{36}} {{6},{2,3}} {{2},{18}} {{3},{3,4}} {{3},{12}} {{4},{9}} {{6},{6}}
Crossrefs
The case of a unique choice (positions of 1) is A008578.
For multisets of multisets we have A050336.
For sets of sets we have A050345.
For integer partitions instead of factorizations we have A089259.
Twice-partitions of this type are counted by A270995.
A302478 gives MM-numbers of set multipartitions.
A302494 gives MM-numbers of sets of sets.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Sum[Length[Select[mps[y], And@@UnsameQ@@@#&]], {y,facs[n]}],{n,100}]
Comments