This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383318 #9 Apr 23 2025 10:39:28 %S A383318 6455,3,5,1,12,37,15,7,4,71,77,35,33,8,9,14,91,371,92,34,346,72,53,94, %T A383318 79,13,923,39,359,2,41,49,140,141,721,916,724,17,31,792,27,80,98,11, %U A383318 54,497,159,547,95,912,760,73,10,340,952,131,25,135,47,93,739,43 %N A383318 Lexicographically earliest sequence of distinct terms such that replacing each term k with prime(k) does not change the succession of digits. %H A383318 Dominic McCarty, <a href="/A383318/b383318.txt">Table of n, a(n) for n = 1..10000</a> %e A383318 Let b(n) = prime(a(n)) %e A383318 (a(n)): 6455, 3, 5, 1, 12, 37, 15, 7, 4, 71, 77, ... %e A383318 (b(n)): 64553, 5, 11, 2, 37, 157, 47, 17, 7, ... %o A383318 (Python) %o A383318 from sympy import prime %o A383318 from itertools import count %o A383318 a, sa, sb = [6455], "6455", "64553" %o A383318 for _ in range(30): %o A383318 a.append(next(n for k in count(1) if not (n := int(sb[len(sa):len(sa)+k])) in a and not (len(sb) > len(sa) + k and sb[len(sa) + k] == "0"))) %o A383318 sa += str(a[-1]); sb += str(prime(a[-1])) %o A383318 print(a) %Y A383318 Cf. A383319 (prime(a(n))), A067928, A383320, A383322, A302656. %K A383318 nonn,base %O A383318 1,1 %A A383318 _Dominic McCarty_, Apr 23 2025