cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383328 Numbers that have the same set of digits as the sum of the squares of their digits.

This page as a plain text file.
%I A383328 #23 May 13 2025 08:26:32
%S A383328 0,1,155,224,242,334,343,422,433,505,515,550,551,1388,1788,1838,1878,
%T A383328 1883,1887,3188,3334,3336,3343,3363,3433,3633,3818,3881,4333,5005,
%U A383328 5050,5500,6333,7188,7818,7881,8138,8178,8183,8187,8318,8381,8718,8781,8813,8817,8831
%N A383328 Numbers that have the same set of digits as the sum of the squares of their digits.
%e A383328 155 and 1^2 + 5^2 + 5^2 = 51 have the same set of digits {1,5}, so 155 is a term.
%t A383328 q[k_] := Module[{d = IntegerDigits[k]}, Union[d] == Union[IntegerDigits[Total[d^2]]]]; Select[Range[0, 10000], q] (* _Amiram Eldar_, Apr 23 2025 *)
%o A383328 (Python)
%o A383328 def ok(n): return set(s:=str(n)) == set(str(sum(int(d)**2 for d in s)))
%o A383328 print([k for k in range(10**4) if ok(k)]) # _Michael S. Branicky_, Apr 23 2025
%o A383328 (PARI) isok(k) = my(d=digits(k)); Set(d) == Set(digits(sum(i=1, #d, d[i]^2))); \\ _Michel Marcus_, May 13 2025
%Y A383328 Cf. A003132, A029793, A249515.
%K A383328 nonn,base
%O A383328 1,3
%A A383328 _Jean-Marc Rebert_, Apr 23 2025