This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383349 #25 May 02 2025 17:39:34 %S A383349 0,1,488,668,686,848,866,884,1346,1364,1436,1463,1634,1643,2088,2556, %T A383349 2565,2655,2808,2880,3146,3164,3416,3461,3614,3641,4136,4163,4316, %U A383349 4361,4479,4497,4613,4631,4749,4794,4947,4974,5256,5265,5526,5562,5625,5652,6134,6143 %N A383349 Numbers that have the same set of digits as the sum of 4th powers of its digits. %e A383349 488 and 4^4 + 8^4 + 8^4 = 8448 have the same set of digits {4,8}, so 488 is a term. %t A383349 q[k_] := Module[{d = IntegerDigits[k]}, Union[d] == Union[IntegerDigits[Total[d^4]]]]; Select[Range[0, 7000], q] (* _Amiram Eldar_, Apr 24 2025 *) %o A383349 (PARI) isok(k) = my(d=digits(k)); Set(d) == Set(digits(sum(i=1, #d, d[i]^4))); \\ _Michel Marcus_, Apr 24 2025 %o A383349 (Python) %o A383349 def ok(n): return set(s:=str(n)) == set(str(sum(int(d)**4 for d in s))) %o A383349 print([k for k in range(10**4) if ok(k)]) # _Michael S. Branicky_, Apr 24 2025 %Y A383349 Cf. A055013, A383328, A383347, A249515, A003132. %Y A383349 Cf. A052455 (a subsequence). %K A383349 nonn,base %O A383349 1,3 %A A383349 _Jean-Marc Rebert_, Apr 24 2025