cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383349 Numbers that have the same set of digits as the sum of 4th powers of its digits.

This page as a plain text file.
%I A383349 #25 May 02 2025 17:39:34
%S A383349 0,1,488,668,686,848,866,884,1346,1364,1436,1463,1634,1643,2088,2556,
%T A383349 2565,2655,2808,2880,3146,3164,3416,3461,3614,3641,4136,4163,4316,
%U A383349 4361,4479,4497,4613,4631,4749,4794,4947,4974,5256,5265,5526,5562,5625,5652,6134,6143
%N A383349 Numbers that have the same set of digits as the sum of 4th powers of its digits.
%e A383349 488 and 4^4 + 8^4 + 8^4 = 8448 have the same set of digits {4,8}, so 488 is a term.
%t A383349 q[k_] := Module[{d = IntegerDigits[k]}, Union[d] == Union[IntegerDigits[Total[d^4]]]]; Select[Range[0, 7000], q] (* _Amiram Eldar_, Apr 24 2025 *)
%o A383349 (PARI) isok(k) = my(d=digits(k)); Set(d) == Set(digits(sum(i=1, #d, d[i]^4))); \\ _Michel Marcus_, Apr 24 2025
%o A383349 (Python)
%o A383349 def ok(n): return set(s:=str(n)) == set(str(sum(int(d)**4 for d in s)))
%o A383349 print([k for k in range(10**4) if ok(k)]) # _Michael S. Branicky_, Apr 24 2025
%Y A383349 Cf. A055013, A383328, A383347, A249515, A003132.
%Y A383349 Cf. A052455 (a subsequence).
%K A383349 nonn,base
%O A383349 1,3
%A A383349 _Jean-Marc Rebert_, Apr 24 2025