This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383351 #9 May 01 2025 18:42:46 %S A383351 1,0,4,0,6,10,0,8,24,20,0,10,53,60,35,0,12,88,164,120,56,0,14,144,348, %T A383351 370,210,84,0,16,208,672,904,700,336,120,0,18,299,1174,1998,1870,1183, %U A383351 504,165,0,20,400,1952,3952,4524,3360,1848,720,220 %N A383351 Triangle read by rows: T(n, k) is the number of partitions of a 2-colored set of n objects into k parts where 0 <= k <= n, and each part is one of 2 kinds. %F A383351 T(n,n) = binomial(n + 3, 3) = A000292(n + 1). %F A383351 T(n,1) = 2*n + 2 for n >= 1. %F A383351 T(n,k+1) = A383352(n,k+1) - A383352(n,k) for 0 <= k < n. %e A383351 Triangle starts: %e A383351 0 : [1] %e A383351 1 : [0, 4] %e A383351 2 : [0, 6, 10] %e A383351 3 : [0, 8, 24, 20] %e A383351 4 : [0, 10, 53, 60, 35] %e A383351 5 : [0, 12, 88, 164, 120, 56] %e A383351 6 : [0, 14, 144, 348, 370, 210, 84] %e A383351 7 : [0, 16, 208, 672, 904, 700, 336, 120] %e A383351 8 : [0, 18, 299, 1174, 1998, 1870, 1183, 504, 165] %e A383351 9 : [0, 20, 400, 1952, 3952, 4524, 3360, 1848, 720, 220] %e A383351 10 : [0, 22, 534, 3052, 7394, 9834, 8652, 5488, 2724, 990, 286] %e A383351 ... %o A383351 (Python) %o A383351 from sympy import binomial %o A383351 from sympy.utilities.iterables import partitions %o A383351 def calc_w(k , m): %o A383351 s = 0 %o A383351 for p in partitions(m, m=k+1): %o A383351 fact = 1 %o A383351 j = k + 1 %o A383351 for x in p : %o A383351 fact *= binomial(j, p[x]) * (x + 1) ** p[x] %o A383351 j -= p[x] %o A383351 s += fact %o A383351 return s %o A383351 def t_row(n): %o A383351 if n == 0 : return [1] %o A383351 t = list([0] * n) %o A383351 for p in partitions( n): %o A383351 fact = 1 %o A383351 s = 0 %o A383351 for k in p : %o A383351 s += p[k] %o A383351 fact *= calc_w(k, p[k]) %o A383351 if s > 0 : %o A383351 t[s - 1] += fact %o A383351 return [0] + t %Y A383351 Main diagonal gives A000292(n+1). %Y A383351 Partial row sums are A383352. %Y A383351 Cf. A382342 (1-colored), A382339 (1-kind), A008284 (1-colored, 1-kind). %K A383351 nonn,tabl %O A383351 0,3 %A A383351 _Peter Dolland_, Apr 24 2025