This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383353 #20 May 08 2025 03:16:39 %S A383353 1,2,0,3,4,0,4,8,6,0,5,12,22,8,0,6,16,38,40,10,0,7,20,54,92,73,12,0,8, %T A383353 24,70,144,196,112,14,0,9,28,86,196,354,376,172,16,0,10,32,102,248, %U A383353 512,760,678,240,18,0,11,36,118,300,670,1200,1554,1136,335,20,0 %N A383353 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n 2-colored objects are distributed into k containers of two kinds. Containers may be left empty. %H A383353 Alois P. Heinz, <a href="/A383353/b383353.txt">Rows n = 0..200, flattened</a> %F A383353 A(0,k) = k + 1. %F A383353 A(1,k) = 4*k. %F A383353 A(2,k+1) = 6 + 16 * k. %F A383353 A(n,1) = 2 + 2 * n. %F A383353 A(n,n+k) = A(n,n) + k * A383352(n,n). %F A383353 A(n,k) = Sum_{i=0..k} (k + 1 - i) * A383351(n,i) for 0 <= k <= n. %F A383353 Sum_{k=0..n} (-1)^k*T(n-k,k) = A278710(n). - _Alois P. Heinz_, May 05 2025 %e A383353 Array starts: %e A383353 0 : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...] %e A383353 1 : [0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...] %e A383353 2 : [0, 6, 22, 38, 54, 70, 86, 102, 118, 134, 150, ...] %e A383353 3 : [0, 8, 40, 92, 144, 196, 248, 300, 352, 404, 456, ...] %e A383353 4 : [0, 10, 73, 196, 354, 512, 670, 828, 986, 1144, 1302, ...] %e A383353 5 : [0, 12, 112, 376, 760, 1200, 1640, 2080, 2520, 2960, 3400, ...] %e A383353 6 : [0, 14, 172, 678, 1554, 2640, 3810, 4980, 6150, 7320, 8490, ...] %e A383353 7 : [0, 16, 240, 1136, 2936, 5436, 8272, 11228, 14184, 17140, 20096, ...] %e A383353 8 : [0, 18, 335, 1826, 5315, 10674, 17216, 24262, 31473, 38684, 45895, ...] %e A383353 9 : [0, 20, 440, 2812, 9136, 19984, 34192, 50248, 67024, 84020, 101016, ...] %e A383353 10 : [0, 22, 578, 4186, 15188, 36024, 65512, 100488, 138188, 176878, 215854, ...] %e A383353 ... %p A383353 b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, (n+1)*x^n, %p A383353 add(b(n-i*j, min(n-i*j, i-1))*binomial(i+j, j)*x^j, j=0..n/i))) %p A383353 end: %p A383353 g:= proc(n, k) option remember; %p A383353 `if`(k<0, 0, g(n, k-1)+coeff(b(n$2), x, k)) %p A383353 end: %p A383353 A:= (n, k)-> add(add(g(j, h)*g(n-j, k-h), h=0..k), j=0..n): %p A383353 seq(seq(A(n, d-n), n=0..d), d=0..10); # _Alois P. Heinz_, May 05 2025 %o A383353 (Python) %o A383353 from sympy import binomial %o A383353 from sympy.utilities.iterables import partitions %o A383353 def calc_w( k , m): %o A383353 s = 0 %o A383353 for p in partitions( m, m=k+1): %o A383353 fact = 1 %o A383353 j = k + 1 %o A383353 for x in p : %o A383353 fact *= binomial( j, p[x]) * (x + 1) ** p[x] %o A383353 j -= p[x] %o A383353 s += fact %o A383353 return s %o A383353 def a_row( n, length=11): %o A383353 if n == 0 : return [ k + 1 for k in range( length) ] %o A383353 t = list( [0] * length) %o A383353 for p in partitions( n): %o A383353 fact = 1 %o A383353 s = 0 %o A383353 for k in p : %o A383353 s += p[k] %o A383353 fact *= calc_w( k, p[k]) %o A383353 if s > 0 : %o A383353 t[s - 1] += fact %o A383353 t = [0] + t %o A383353 for i in range( 1, length): %o A383353 t[i+1] += t[i] * 2 - t[i - 1] %o A383353 return t %Y A383353 Antidiagonal sums give A161870. %Y A383353 Cf. A383351, A383352. %Y A383353 Cf. A382345 (1-color), A381891 (1-kind), A026820 (1-color, 1-kind). %Y A383353 Cf. A278710. %K A383353 nonn,tabl %O A383353 0,2 %A A383353 _Peter Dolland_, Apr 24 2025