This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383360 #13 May 02 2025 19:33:44 %S A383360 1,4,15,20,21,27,28,30,32,33,39,40,44,48,51,52,57,68,69,76,84,87,92, %T A383360 93,111,112,116,123,124,129,141,144,148,159,160,164,172,175,177,183, %U A383360 188,200,201,210,212,213,219,224,236,237,240,244,245,249,267,268,270,275 %N A383360 Numbers k that have an i-th smallest divisor d_i(k) for which i*d_i(k) = k. %C A383360 Numbers k for which a number i exists such that k = i*A027750(k,i). %H A383360 Felix Huber, <a href="/A383360/b383360.txt">Table of n, a(n) for n = 1..10000</a> %H A383360 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Divisor.html">Divisor</a>. %F A383360 a(n) = A383362(n)*A383361(n). %F A383360 a(n) = A383362(n)*A027750(a(n),A383362(n)). %e A383360 30 is in the sequence because its 5th smallest divisor is 6 and 5*6 = 30. %p A383360 with(NumberTheory): %p A383360 A383360:=proc(n) %p A383360 option remember; %p A383360 local k,i,L; %p A383360 if n=1 then %p A383360 1 %p A383360 else %p A383360 for k from procname(n-1)+1 do %p A383360 L:=Divisors(k); %p A383360 for i to tau(k) do %p A383360 if L[i]*i=k then %p A383360 return k %p A383360 fi %p A383360 od %p A383360 od %p A383360 fi; %p A383360 end proc; %p A383360 seq(A383360(n),n=1..58); %t A383360 q[k_] := AnyTrue[(d = Divisors[k]) * Range[Length[d]], # == k &]; Select[Range[300], q] (* _Amiram Eldar_, Apr 26 2025 *) %o A383360 (PARI) isok(k) = my(d=divisors(k)); for (i=1, #d, if (d[i]*i == k, return(1))); \\ _Michel Marcus_, Apr 26 2025 %Y A383360 Cf. A027750, A383361, A383362. %K A383360 nonn,easy %O A383360 1,2 %A A383360 _Felix Huber_, Apr 26 2025