A383362 a(n) is the number i for which i*d_i = A383360(n), where d_i is i-th smallest divisor d_i of A383360(n).
1, 2, 3, 4, 3, 3, 4, 5, 4, 3, 3, 5, 4, 6, 3, 4, 3, 4, 3, 4, 7, 3, 4, 3, 3, 7, 4, 3, 4, 3, 3, 9, 4, 3, 8, 4, 4, 5, 3, 3, 4, 8, 3, 10, 4, 3, 3, 8, 4, 3, 12, 4, 5, 3, 3, 4, 10, 5, 10, 4, 3, 4, 3, 3, 4, 3, 5, 3, 4, 3, 4, 3, 4, 8, 3, 10, 4, 3, 4, 3, 5, 4, 4, 7, 3, 4
Offset: 1
Examples
a(8) = 5 because the 5th smallest divisor of A383360(8) = 30 = 5*6 is 6.
Links
- Felix Huber, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(NumberTheory): A383360:=proc(n) option remember; local k,i,L; if n=1 then 1 else for k from procname(n-1)+1 do L:=Divisors(k); for i to tau(k) do if L[i]*i=k then return k fi od od fi; end proc; A383362:=proc(n) local i,M; M:=Divisors(A383360(n)); for i do if A383360(n)/i=M[i] then return i fi od; end proc; seq(A383360(n),n=1..86);