cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383368 Number of intercalates in pine Latin squares of order 2n.

This page as a plain text file.
%I A383368 #9 Aug 21 2025 00:14:56
%S A383368 1,12,27,80,125,252,343,576,729,1100,1331,1872,2197,2940,3375,4352,
%T A383368 4913,6156,6859,8400,9261,11132,12167,14400,15625
%N A383368 Number of intercalates in pine Latin squares of order 2n.
%C A383368 Pine Latin square is a none canonical composite Latin square of order N=2*K formed from specially arranged cyclic Latin squares of order K.
%C A383368 By construction, pine Latin square is determined one-to-one by the cyclic square used, so number of pine Latin squares of order N is equal to number of cyclic Latin squares of order N/2.
%C A383368 All pine Latin squares are horizontally symmetric column-inverse Latin squares.
%C A383368 All pine Latin squares for selected order N are isomorphic one to another as Latin squares, so they have same properties (number of transversals, intercalates, etc.).
%C A383368 Pine Latin squares have interesting properties, for example, maximum known number of intercalates for some orders N (at least N in {2, 4, 6, 10, 18}).
%C A383368 Pine Latin squares do not exist for odd orders due to they are horizontally symmetric.
%C A383368 Pine Latin squares of order N=2n exists for all even orders due to existing of corresponding cyclic Latin squares of order n. According to this, maximum number of intercalates in a Latin square A092237(N) >= (2k)^2 * (2k + 1) for N=4k and A092237(N) >= (2k+1)^3 for N=4k+2. Therefore, asimptotically maximum number of intercalates in Latin squares of even orders N greater or equal than o(k1*N^3), where k1 = 1/8.
%H A383368 R. Bean, <a href="https://www.researchgate.net/publication/2416446_Critical_Sets_in_Latin_Squares_and_Associated_Structures">Critical sets in Latin squares and associated structures</a>, Ph.D. Thesis, The University of Queensland, 2001.
%H A383368 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_2995">About the properties of pine Latin squares</a> (in Russian).
%H A383368 Eduard I. Vatutin, <a href="/A383368/a383368.txt">Proving list (examples)</a>.
%H A383368 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.
%F A383368 Hypothesis: For all known pine Latin squares of orders N=4k+2 number of intercalates a(n) = a(N/2)= a(2k+1) = (N/2)^3 = (2k+1)^3 = A016755((n-1)/2) (verified for N<29).
%F A383368 Hypothesis: For all known pine Latin squares of orders N=4k number of intercalates a(n) = a(N/2) = a(2k) = (N/2)^2 + (N/2)^3 = 4*k^2 + 8*k^3 = (2k)^2 * (2k+1) = 2*A089207(n/2) = 4*A099721(n/2) (verified for N<29).
%e A383368 For order N=8 pine Latin square
%e A383368   0 1 2 3 4 5 6 7
%e A383368   1 2 3 0 7 4 5 6
%e A383368   2 3 0 1 6 7 4 5
%e A383368   3 0 1 2 5 6 7 4
%e A383368   4 5 6 7 0 1 2 3
%e A383368   5 6 7 4 3 0 1 2
%e A383368   6 7 4 5 2 3 0 1
%e A383368   7 4 5 6 1 2 3 0
%e A383368 have 80 intercalates.
%e A383368 .
%e A383368 For order N=10 pine Latin square
%e A383368   0 1 2 3 4 5 6 7 8 9
%e A383368   1 2 3 4 0 9 5 6 7 8
%e A383368   2 3 4 0 1 8 9 5 6 7
%e A383368   3 4 0 1 2 7 8 9 5 6
%e A383368   4 0 1 2 3 6 7 8 9 5
%e A383368   5 6 7 8 9 0 1 2 3 4
%e A383368   6 7 8 9 5 4 0 1 2 3
%e A383368   7 8 9 5 6 3 4 0 1 2
%e A383368   8 9 5 6 7 2 3 4 0 1
%e A383368   9 5 6 7 8 1 2 3 4 0
%e A383368 have 125 intercalates.
%e A383368 .
%e A383368 For order N=12 pine Latin square
%e A383368   0 1 2 3 4 5 6 7 8 9 10 11
%e A383368   1 2 3 4 5 0 11 6 7 8 9 10
%e A383368   2 3 4 5 0 1 10 11 6 7 8 9
%e A383368   3 4 5 0 1 2 9 10 11 6 7 8
%e A383368   4 5 0 1 2 3 8 9 10 11 6 7
%e A383368   5 0 1 2 3 4 7 8 9 10 11 6
%e A383368   6 7 8 9 10 11 0 1 2 3 4 5
%e A383368   7 8 9 10 11 6 5 0 1 2 3 4
%e A383368   8 9 10 11 6 7 4 5 0 1 2 3
%e A383368   9 10 11 6 7 8 3 4 5 0 1 2
%e A383368   10 11 6 7 8 9 2 3 4 5 0 1
%e A383368   11 6 7 8 9 10 1 2 3 4 5 0
%e A383368 have 252 intercalates.
%Y A383368 Cf. A002860, A016755, A089207, A092237, A099721, A338522, A383570.
%K A383368 nonn,easy,changed
%O A383368 1,2
%A A383368 _Eduard I. Vatutin_, Apr 24 2025