This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383370 #14 May 02 2025 12:50:40 %S A383370 1,1,2,3,12,25,172,482,5318,19675,333768,1609846,40832554,254370640, %T A383370 9459449890,75546875426,4061670272088 %N A383370 Number of partial orders on {1,2,...,n} that are contained in the usual linear order, whose dual is given by the relabelling k -> n+1-k. %C A383370 a(n) is the number of n X n upper triangular Boolean matrices B with all diagonal entries 1 such that B = B^2, which are symmetric about the antidiagonal. These matrices can be seen as closed sets of inversions (pairs (i,j) with 1 <= i < j <= n). A set of inversions E is closed if for all i < j < k, if E contains (i,j) and (j,k) then it contains (i,k). %e A383370 The Boolean matrices corresponding to a(4) = 12: %e A383370 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 %e A383370 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 %e A383370 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 %e A383370 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 %e A383370 . %e A383370 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 %e A383370 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 %e A383370 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 %e A383370 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 %e A383370 . %e A383370 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 %e A383370 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 %e A383370 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 %e A383370 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 %o A383370 (SageMath) %o A383370 def a(n): %o A383370 S = set() %o A383370 for P in Posets(n): %o A383370 if P.is_isomorphic(P.dual()): %o A383370 for l in P.linear_extensions(): %o A383370 t = tuple(tuple(int(P.is_lequal(l[j],l[i])) for j in range(i)) for i in range(1,len(l))) %o A383370 if all(t[j][i]==t[n-i-2][n-j-2] for i in range((n-1)//2) for j in range(i,n-i-2)): %o A383370 S.add(t) %o A383370 return len(S) %Y A383370 Cf. A006455, A037223. %K A383370 nonn,hard,more %O A383370 0,3 %A A383370 _Ludovic Schwob_, Apr 24 2025 %E A383370 a(10)-a(16) from _Christian Sievers_, May 02 2025