A383396 Primes p such that p + 6, p + 10, p + 12, p + 16 and p + 22 are also primes.
7, 31, 2677, 35521, 42451, 44257, 55807, 93481, 118891, 198817, 221707, 234181, 313981, 393571, 560227, 669847, 1107781, 1210387, 1596367, 1616611, 1738411, 2710921, 3194551, 3377587, 3441931, 3484561, 3586537, 3699181, 3887551, 3904897, 4095661, 4192261, 4239721
Offset: 1
Keywords
Examples
p = 2677: 2677 + 6 = 2683, 2677 + 10 = 2687, 2677 + 12 = 2689, 2677 + 16 = 2693, 2677 + 22 = 2699 -> prime sextuple: (2677, 2683, 2687, 2689, 2693, 2699).
Programs
-
Mathematica
Select[Prime[Range[298900]], AllTrue[#+{6,10,12,16,22}, PrimeQ]&] (* James C. McMahon, May 02 2025 *)
Formula
a(n) == 1 (mod 6).
Comments