cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383398 a(n) is the smallest number whose sum with any previous term is abundant.

This page as a plain text file.
%I A383398 #27 May 02 2025 19:40:05
%S A383398 1,11,19,29,59,349,521,2071,66949,223231,3660191,4552181,5500081,
%T A383398 10161979,12235619,47859629
%N A383398 a(n) is the smallest number whose sum with any previous term is abundant.
%C A383398 The terms are generally either prime or semiprime. This results in all known terms to be deficient (see A005100).
%C A383398 If a(1) is an even abundant number, then the set of all the terms is simply the set of all the even abundant numbers (see A173490).
%C A383398 I conjecture that all the terms are odd integers ending in 1 or 9. The odd nature of the terms seems particularly likely, as the sum of a(n) that's even with any previous term would need to be an odd abundant number (see A005231).
%C A383398 This is also equivalent to the sum of any 2 terms being an abundant number.
%e A383398 29 is a member, because 29+19, 29+11 and 29+1 are all abundant numbers.
%p A383398 q:= n-> is(numtheory[sigma](n)>2*n):
%p A383398 a:= proc(n) option remember; local k, l;
%p A383398       l:= [seq(a(i), i=1..n-1)]:
%p A383398       for k while not andmap(j-> q(k+j), l) do od; k
%p A383398     end:
%p A383398 seq(a(n), n=1..10);  # _Alois P. Heinz_, Apr 25 2025
%t A383398 a[1] = 1; a[n_] := a[n] = Module[{k = a[n-1] + 1}, While[AnyTrue[Array[a, n-1], DivisorSigma[-1, #+k] <= 2 &], k++]; k]; Array[a, 10] (* _Amiram Eldar_, Apr 26 2025 *)
%o A383398 (PARI) isabundant(n) = (sigma(n) > 2*n) ;
%o A383398 isok(k, n, va) = for (i=1, n-1, if (! isabundant(k+va[i]), return(0));); return(1);
%o A383398 lista(nn) = my(va=vector(nn)); for (n=1, nn, my(k=if (n==1, 1, 1+va[n-1])); while(! isok(k, n, va), k++); k; va[n] = k;); va; \\ _Michel Marcus_, Apr 26 2025
%Y A383398 Cf. A383399, A005101, A005231, A005100, A173490.
%Y A383398 Cf. A000040, A001358.
%K A383398 nonn,hard,more
%O A383398 1,2
%A A383398 _Jakub Buczak_, Apr 25 2025
%E A383398 a(16) from _Amiram Eldar_, Apr 26 2025