cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383400 Starting values of maximal runs of at least five integers, each with exactly two distinct prime factors.

This page as a plain text file.
%I A383400 #17 May 13 2025 09:59:17
%S A383400 54,91,115,141,158,205,212,295,301,323,391,535,685,721,799,1135,1345,
%T A383400 1465,1535,1711,1941,1981,2101,2215,2302,2425,2641,3865,4411,5461,
%U A383400 6505,6625,6925,7165,7231,7261,7441,7855,7891,8575,9121,9355,9571
%N A383400 Starting values of maximal runs of at least five integers, each with exactly two distinct prime factors.
%C A383400 omega is the function that counts the number of distinct prime factors of a number.
%C A383400 Integers k such that omega(k) = 2 = omega(k+1) = ... = omega(k+4), but omega(k-1) != 2.
%C A383400 Every term is also in A088986, but any subsequent terms from the same run are removed.
%e A383400 a(1) = 54 (run length 5)
%e A383400   53 = 53: omega = 1 (prime, so the previous number is not counted)
%e A383400   54 = 2 * 3^3: omega = 2
%e A383400   55 = 5 * 11: omega = 2
%e A383400   56 = 2^3 * 7: omega = 2
%e A383400   57 = 3 * 19: omega = 2
%e A383400   58 = 2 * 29: omega = 2  (58 is the last member; 59 is prime)
%e A383400 a(2) = 91  (run length 6)
%e A383400   90 = 2 * 3^2 * 5: omega = 3
%e A383400   91 = 7 * 13: omega = 2
%e A383400   92 = 2^2 * 23: omega = 2
%e A383400   93 = 3 * 31: omega = 2
%e A383400   94 = 2 * 47: omega = 2
%e A383400   95 = 5 * 19: omega = 2
%e A383400   96 = 2^5 * 3: omega = 2  (97 is prime, so the run stops at 96)
%e A383400 a(4) = 141  (run length 8)
%e A383400   140 = 2^2 * 5 * 7: omega = 3
%e A383400   141 = 3 * 47: omega = 2
%e A383400   142 = 2 * 71: omega = 2
%e A383400   143 = 11 * 13: omega = 2
%e A383400   144 = 2^4 * 3^2: omega = 2
%e A383400   145 = 5 * 29: omega = 2
%e A383400   146 = 2 * 73: omega = 2
%e A383400   147 = 3 * 7^2: omega = 2
%e A383400   148 = 2^2 * 37: omega = 2  (149 is prime)
%t A383400 With[{s = Select[Range[10000], PrimeNu[#] == 2 &]},
%t A383400   First /@ Select[Split[s, #2 == #1 + 1 &], Length[#] >= 5 &]
%t A383400 ]
%Y A383400 Cf. A001221, A088986, A364307.
%K A383400 nonn
%O A383400 1,1
%A A383400 _IWABUCHI Yu(u)ki_, Apr 25 2025