cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383410 Array read by downward antidiagonals: A(n,k) = Sum_{i=0..n-1} Sum_{j=0..k+1} binomial(n-1,i)*binomial(k+1,j)*A(i,j) with A(0,k) = 1, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 4, 8, 1, 8, 22, 44, 1, 16, 62, 154, 308, 1, 32, 178, 554, 1306, 2612, 1, 64, 518, 2038, 5690, 12994, 25988, 1, 128, 1522, 7634, 25366, 66338, 148282, 296564, 1, 256, 4502, 29014, 115298, 346366, 867002, 1908274, 3816548, 1, 512, 13378, 111554, 532726, 1844042, 5179798, 12564434, 27333706, 54667412
Offset: 0

Views

Author

Mikhail Kurkov, Apr 26 2025

Keywords

Examples

			Array begins:
==================================================================
n\k|     0      1      2       3        4         5          6 ...
---+--------------------------------------------------------------
0  |     1      1      1       1        1         1          1 ...
1  |     2      4      8      16       32        64        128 ...
2  |     8     22     62     178      518      1522       4502 ...
3  |    44    154    554    2038     7634     29014     111554 ...
4  |   308   1306   5690   25366   115298    532726    2495570 ...
5  |  2612  12994  66338  346366  1844042   9985054   54865658 ...
6  | 25988 148282 867002 5179798 31540898 195320182 1227693842 ...
  ...
		

Crossrefs

Cf. A005649.

Programs

  • PARI
    A(m, n=m)={my(r=vectorv(m+1), v=vector(m+1, j, vector(n+m-j+2, k, (j==1)))); r[1] = v[1][1..n+1];
    for(i=1, m, v[i+1] = vector(#v[i+1], k, sum(j=1, i, sum(q=1, k+1, binomial(i-1,j-1)*binomial(k,q-1)*v[j][q]))); r[1+i] = v[i+1][1..n+1]); Mat(r)}
    { A(6) }

Formula

Conjecture: A(n,0) = A005649(n).