A383410 Array read by downward antidiagonals: A(n,k) = Sum_{i=0..n-1} Sum_{j=0..k+1} binomial(n-1,i)*binomial(k+1,j)*A(i,j) with A(0,k) = 1, n >= 0, k >= 0.
1, 1, 2, 1, 4, 8, 1, 8, 22, 44, 1, 16, 62, 154, 308, 1, 32, 178, 554, 1306, 2612, 1, 64, 518, 2038, 5690, 12994, 25988, 1, 128, 1522, 7634, 25366, 66338, 148282, 296564, 1, 256, 4502, 29014, 115298, 346366, 867002, 1908274, 3816548, 1, 512, 13378, 111554, 532726, 1844042, 5179798, 12564434, 27333706, 54667412
Offset: 0
Examples
Array begins: ================================================================== n\k| 0 1 2 3 4 5 6 ... ---+-------------------------------------------------------------- 0 | 1 1 1 1 1 1 1 ... 1 | 2 4 8 16 32 64 128 ... 2 | 8 22 62 178 518 1522 4502 ... 3 | 44 154 554 2038 7634 29014 111554 ... 4 | 308 1306 5690 25366 115298 532726 2495570 ... 5 | 2612 12994 66338 346366 1844042 9985054 54865658 ... 6 | 25988 148282 867002 5179798 31540898 195320182 1227693842 ... ...
Crossrefs
Cf. A005649.
Programs
-
PARI
A(m, n=m)={my(r=vectorv(m+1), v=vector(m+1, j, vector(n+m-j+2, k, (j==1)))); r[1] = v[1][1..n+1]; for(i=1, m, v[i+1] = vector(#v[i+1], k, sum(j=1, i, sum(q=1, k+1, binomial(i-1,j-1)*binomial(k,q-1)*v[j][q]))); r[1+i] = v[i+1][1..n+1]); Mat(r)} { A(6) }
Formula
Conjecture: A(n,0) = A005649(n).