This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383412 #7 May 02 2025 08:01:23 %S A383412 2,2,2,3,2,3,4,5,2,3,5,6,6,7,7,8,2,4,9,9,4,7,9,10,8,5,5,3,11,12,5,10, %T A383412 2,10,11,11,3,12,12,12,13,13,6,13,13,14,14,14,15,7,15,15,16,16,16,17, %U A383412 14,17,18,18,15,18,19,19,2,20,20,20,4,17,17,21,6,18 %N A383412 Lexicographically earliest sequence of integers >= 2 such that whenever a(k_1) = ... = a(k_m) with k_1 < ... < k_m, the sum k_1 + ... + k_m can be computed without carries in base a(k_1). %C A383412 This sequence is a variant of A279125 and A336206 exploiting several bases. %C A383412 This sequence is unbounded: %C A383412 - by contradiction, suppose that a(n) <= B for some B >= 2, %C A383412 - let U_B = {1 + B!*k, k >= 0}, %C A383412 - the base b expansion of any term of U_B ends with a digit 1 in any base b in the interval 2..B, %C A383412 - by the pigeonhole principle, for some b in the interval 2..B, we have a(u) = b for infinitely many terms of U_B, %C A383412 - however we can at most add b-1 such terms in base b, a contradiction. %H A383412 Rémy Sigrist, <a href="/A383412/b383412.txt">Table of n, a(n) for n = 0..10000</a> %F A383412 a(n) = 2 iff n belongs to A131577. %e A383412 The first terms, in decimal and in base a(n), alongside the corresponding sums of indices k <= n such that a(k) = a(n) in base a(n), are: %e A383412 n a(n) n in base a(n) Sums in base a(n) %e A383412 -- ---- -------------- ----------------- %e A383412 0 2 0 0 %e A383412 1 2 1 1 %e A383412 2 2 1,0 1,1 %e A383412 3 3 1,0 1,0 %e A383412 4 2 1,0,0 1,1,1 %e A383412 5 3 1,2 2,2 %e A383412 6 4 1,2 1,2 %e A383412 7 5 1,2 1,2 %e A383412 8 2 1,0,0,0 1,1,1,1 %e A383412 9 3 1,0,0 1,2,2 %e A383412 10 5 2,0 3,2 %e A383412 11 6 1,5 1,5 %e A383412 12 6 2,0 3,5 %e A383412 13 7 1,6 1,6 %e A383412 14 7 2,0 3,6 %e A383412 15 8 1,7 1,7 %o A383412 (PARI) { t = [0, 0]; %o A383412 for (n = 0, 73, %o A383412 for (b = 2, oo, %o A383412 if (#t < b, %o A383412 t = concat(t, vector(#t));); %o A383412 if (sumdigits(t[b]+n, b) == sumdigits(t[b], b) + sumdigits(n, b), %o A383412 print1 (b", "); t[b] += n; break;););); } %Y A383412 Cf. A131577, A279125, A336206, A375776. %K A383412 nonn,base %O A383412 0,1 %A A383412 _Rémy Sigrist_, Apr 26 2025