cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383423 Indices k such that A003849(k) = 0 and A383422(k) = 0.

Original entry on oeis.org

0, 3, 7, 10, 11, 15, 18, 21, 28, 29, 32, 36, 39, 44, 47, 50, 54, 57, 58, 62, 65, 68, 75, 76, 79, 83, 86, 87, 91, 94, 97, 104, 105, 109, 112, 115, 120, 123, 126, 130, 133, 134, 138, 141, 144, 151, 152, 155, 159, 162, 167, 170, 173, 180, 181, 185, 188, 191
Offset: 1

Views

Author

Clark Kimberling, Apr 27 2025

Keywords

Comments

The positive integers are partitioned by this sequence together with A383424, A383425, and A383426.
Conjecture: {a(n) - a(n-1), n>=2} = {1, 3, 4, 5, 7}.

Crossrefs

Programs

  • Mathematica
    wF = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {0}}] &, {0}, 15];  (* A003849 *)
    s[0] = "0"; s[1] = "011"; s[n_] := StringJoin[s[n - 1], s[n - 2]]; (* A383422 *)
    wL = Join[{0}, IntegerDigits[FromDigits[s[15]]]];
    -1+Select[Range[400], wF[[#]] == wL[[#]] == 0 &]
  • Python
    from itertools import count, islice
    from math import isqrt
    def A383423_gen(): # generator of terms
        for n in count(1):
            if ((k:=(n+isqrt(5*n**2)&-2)-n)+1+isqrt(m:=5*(k+1)**2)>>1)-(k+isqrt(m-10*k-5)>>1)==2: yield k-1
    A383423_list = list(islice(A383423_gen(),58)) # Chai Wah Wu, May 22 2025