cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383438 a(n) = Sum_{k=1..n} Product_{p|k, p prime} k/p.

This page as a plain text file.
%I A383438 #12 Apr 27 2025 15:02:32
%S A383438 1,2,3,5,6,12,13,17,20,30,31,55,56,70,85,93,94,148,149,189,210,232,
%T A383438 233,329,334,360,369,425,426,1326,1327,1343,1376,1410,1445,1661,1662,
%U A383438 1700,1739,1899,1900,3664,3665,3753,3888,3934,3935,4319,4326,4576,4627,4731
%N A383438 a(n) = Sum_{k=1..n} Product_{p|k, p prime} k/p.
%F A383438 a(n) = Sum_{k=1..n} A205959(k).
%t A383438 a[n_]:=Sum[Product[k/p,{p,Select[Divisors[k],PrimeQ[#] &]}],{k,n}]; Array[a,52] (* _Stefano Spezia_, Apr 27 2025 *)
%o A383438 (SageMath)
%o A383438 from itertools import accumulate
%o A383438 def A383438List(len: int) -> list[int]:
%o A383438     return list(accumulate([A205959(n) for n in range(1, len + 1)]))
%o A383438 print(A383438List(52))
%o A383438 (PARI) a(n) = sum(k=1, n, my(f=factor(k)[, 1]); prod(i=1, #f, k/f[i])); \\ _Michel Marcus_, Apr 27 2025
%Y A383438 Cf. A205959.
%K A383438 nonn
%O A383438 1,2
%A A383438 _Peter Luschny_, Apr 27 2025