cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377090 a(0) = 0; thereafter, for n > 0, a(n) is the least integer (in absolute value) not yet in the sequence such that the absolute difference between a(n-1) and a(n) is a prime number; in case of a tie, preference is given to the positive value.

Original entry on oeis.org

0, 2, -1, 1, -2, 3, -4, -6, -3, 4, 6, -5, -7, -9, 8, 5, 7, 9, -8, -10, -12, 11, 13, 10, 12, -11, -13, -15, 14, 16, 18, 15, -14, -16, -18, 19, 17, 20, -17, -19, -21, 22, 24, 21, -20, -22, -24, 23, 25, 27, -26, -23, -25, -27, 26, 28, 30, -29, -31, -28, -30, 29
Offset: 0

Views

Author

Rémy Sigrist, Oct 16 2024

Keywords

Comments

This sequence is a variant of A277618 allowing negative values.
Will every integer appear in the sequence?
Conjecture (after studying A383445 and A383446): The sequence contains every integer. - N. J. A. Sloane, Apr 30 2025
The distances d(n) = |a(n)| - n/2 remain very small. Records values of |d(n)| appear at d(1) = 1.5, d(7) = 2.5, d(30) = 3.0, d(117) = 3.5, d(124) = -4.0, d(326) = -5.0, d(530) = 6.0, d(1137) = 6.5, d(1142) = -7.0, d(1342) = 8.0, d(5363) = 8.5, d(5370) = -9.0, d(9567) = 9.5, d(9568) = 10.0, ... - M. F. Hasler, Feb 10 2025

Examples

			The first terms are:
   n   a(n)  |a(n)-a(n-1)|
  --- ------ -------------
   0     0        N/A
   1     2         2
   2    -1         3
   3     1         2
   4    -2         3
   5     3         5
   6    -4         7
   7    -6         2
   8    -3         3
   9     4         7
  10     6         2
  11    -5        11
  12    -7         2
  13    -9         2
  14     8        17
		

Crossrefs

Cf. A277618, A377091, A377092, A380311 (partial sums), A383444 (differences), A383445, A383446.

Programs

  • Mathematica
    A377090list[nmax_] := Module[{s, a, u = 1}, s[_] := False; s[0] = True; NestList[(While[s[u] && s[-u], u++]; a = u; While[s[a] || !PrimeQ[Abs[# - a]], a = Boole[a < 0] - a]; s[a] = True; a) &, 0,nmax]];
    A377090list[100] (* Paolo Xausa, Mar 27 2025 *)
  • PARI
    \\ See Links section.
    
  • PARI
    A377090_first(N, L=1, U=[])={vector(N, n, while(setsearch(U,L), U=setminus(U,[L]); L=(L<0)-L); N=if(n>1, n=L; while(!isprime(abs(n-N)) || setsearch(U, n), n=(n<0)-n); U=setunion(U, [n]); n))} \\ M. F. Hasler, Feb 21 2025
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def cond(n): return isprime(n)
    def agen(): # generator of terms
        an, aset, m = 0, {0}, 1
        for n in count(0):
            yield an
            an = next(s for k in count(m) for s in [k, -k] if s not in aset and cond(abs(an-s)))
            aset.add(an)
            while m in aset and -m in aset: m += 1
    print(list(islice(agen(), 62))) # Michael S. Branicky, Dec 27 2024
    
  • Python
    from sympy import isprime
    def A377090(n):
        while len(terms := A377090.terms) <= n:
            while (k := A377090.N) in terms: A377090.N = (k<0)-k
            while not isprime(abs(k - terms[-1])) or k in terms: k = (k<0)-k
            terms.append(k)
        return terms[n]
    A377090.terms = [0]; A377090.N = 1 # least unused candidate
    # M. F. Hasler, Feb 10 2025, simplified Feb 15 2025

Formula

||a(n)| - n/2| = O(log(n)), probably ||a(n)| - n/2| < 2 log(n+2) for all n. (Conjectured; verified up to n = 10^5.) - M. F. Hasler, Feb 21 2025

A383446 Index of -n in A377090, or -1 if -n does not appear there.

Original entry on oeis.org

0, 2, 4, 8, 6, 11, 7, 12, 18, 13, 19, 25, 20, 26, 32, 27, 33, 38, 34, 39, 44, 40, 45, 51, 46, 52, 50, 53, 59, 57, 60, 58, 65, 69, 64, 70, 74, 72, 78, 73, 77, 83, 86, 84, 87, 85, 95, 97, 94, 96, 101, 104, 102, 107, 103, 108, 114, 109, 115, 118, 116, 119, 117, 120, 129, 132, 130, 136, 131, 135, 140, 143, 141, 144, 142, 145, 156
Offset: 0

Views

Author

N. J. A. Sloane, Apr 30 2025

Keywords

Comments

It is conjectured (see A377090) that every positive integer appears exactly once either here or in A383445.

Crossrefs

Showing 1-2 of 2 results.