This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383462 #27 Jun 21 2025 14:15:42 %S A383462 3,1,4,10,0,5,30,1,0,6,84,0,0,0,7,120,16,1,0,0,8,324,0,0,0,0,0,9,420, %T A383462 40,0,1,0,0,0,10,880,0,0,0,0,0,0,0,11,708,156,24,0,1,0,0,0,0,12,1950, %U A383462 0,0,0,0,0,0,0,0,0,13,1890,280,0,0,0,1,0,0,0,0,0,14 %N A383462 Triangle read by rows: T(n,k) (n >= 3, 2 <= k <= n-1) = number of vertices where k lines cross in the planar graph formed when every pair of vertices of a regular n-gon are joined by an infinite line. %C A383462 For other illustrations see A146212, A344857, A292105. %H A383462 Scott R. Shannon, <a href="/A383462/b383462.txt">Table of n, a(n) for n = 3..4853</a> %H A383462 Scott R. Shannon, <a href="/A383462/a383462_1.txt">Formatted table for rows 3 to 100</a>. %H A383462 Scott R. Shannon, <a href="/A383462/a383462.png">Image of the 5-gon</a>. %H A383462 Scott R. Shannon, <a href="/A383462/a383462_1.png">Image of the 6-gon</a>. %H A383462 Scott R. Shannon, <a href="/A383462/a383462_2.png">Image of the 7-gon</a>. %H A383462 Scott R. Shannon, <a href="/A383462/a383462_3.png">Image of the 8-gon</a>. %e A383462 Triangle begins: %e A383462 3; %e A383462 1, 4; %e A383462 10, 0, 5; %e A383462 30, 1, 0, 6; %e A383462 84, 0, 0, 0, 7; %e A383462 120, 16, 1, 0, 0, 8; %e A383462 324, 0, 0, 0, 0, 0, 9; %e A383462 420, 40, 0, 1, 0, 0, 0, 10; %e A383462 880, 0, 0, 0, 0, 0, 0, 0, 11; %e A383462 708, 156, 24, 0, 1, 0, 0, 0, 0, 12; %e A383462 1950, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13; %e A383462 1890, 280, 0, 0, 0, 1, 0, 0, 0, 0, 0, 14; %e A383462 3780, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15; %e A383462 3408, 544, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 16; %e A383462 6664, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17; %e A383462 4572, 756, 108, 108, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 18; %e A383462 10944, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19; %e A383462 9840, 1280, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 20; %e A383462 . %e A383462 . %e A383462 See the attached table for rows 3 to 100. %e A383462 For n = 8, we may classify the vertices by degree and according to whether they are outside, on, or inside the octagon: %e A383462 V2 V3 V4 V5 V6 V7 %e A383462 ---------------------------------------------------------- %e A383462 outside 80 8 %e A383462 on 0 0 0 0 0 8 %e A383462 inside 40 8 1 0 0 0 %e A383462 ---------------------------------------------------------- %e A383462 totals 120 16 1 0 0 8 %e A383462 ---------------------------------------------------------- %e A383462 Grand total: 145 = A146212(8) %e A383462 In general, for n >= 3, the counts for inside the defining polygon are given by row n of A292105, the total number on or inside the polygon by A007569, and the number outside by A146213. %Y A383462 Row sums are A146212. %Y A383462 Cf. A007569, A146213, A292105, A344857. %K A383462 nonn,tabl %O A383462 3,1 %A A383462 _Scott R. Shannon_ and _N. J. A. Sloane_, Jun 07 2025