A383466 a(0) = 1; thereafter a(n) = 10*n^2 - 5*n + 2.
1, 7, 32, 77, 142, 227, 332, 457, 602, 767, 952, 1157, 1382, 1627, 1892, 2177, 2482, 2807, 3152, 3517, 3902, 4307, 4732, 5177, 5642, 6127, 6632, 7157, 7702, 8267, 8852, 9457, 10082, 10727, 11392, 12077, 12782, 13507, 14252, 15017, 15802, 16607, 17432, 18277, 19142, 20027, 20932, 21857, 22802, 23767, 24752, 25757, 26782, 27827
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Scott R. Shannon, Illustration for a(1) = 7. [Note that the cell counts shown on these four figures do not include the black exterior region, so the totals are off by 1]
- Scott R. Shannon, Illustration for a(2) = 32.
- Scott R. Shannon, Illustration for a(3) = 77.
- Scott R. Shannon, Illustration for a(8) = 602.
- N. J. A. Sloane, Illustration for a(1) = 7.
- N. J. A. Sloane, Illustration for a(2) = 32.
- N. J. A. Sloane, Illustration for a(n), n >= 1, showing a(3) = 77.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Mathematica
A383466[n_] := If[n == 0, 1, 5*n*(2*n - 1) + 2]; Array[A383466, 50, 0] (* or *) Join[{1}, 5*PolygonalNumber[6, Range[49]] + 2] (* or *) LinearRecurrence[{3, -3, 1}, {1, 7, 32, 77}, 50] (* Paolo Xausa, Jul 22 2025 *)
Formula
From Elmo R. Oliveira, Sep 03 2025: (Start)
G.f.: (1 + 4*x + 14*x^2 + x^3)/(1 - x)^3.
E.g.f.: exp(x)*(2 + 5*x + 10*x^2) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
Comments