This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383468 #7 Apr 29 2025 13:27:59 %S A383468 10,15,141,166,274,298,299,687,995,1115,1227,1299,1345,1891,1945,2194, %T A383468 2661,2998,3093,3287,3566,3781,3902,4174,4262,4497,4798,5378,5414, %U A383468 5758,6609,7094,7666,8354,8434,9566,10041,10342,11051,11091,11486,11582,11702,12279,12574,13154,13346,13387,13466 %N A383468 Semiprimes s = A001358(k) such that k, s - k and s + k are also semiprimes. %C A383468 Except for a(1) = 10 = A001358(4), s and k always have different parities. %H A383468 Robert Israel, <a href="/A383468/b383468.txt">Table of n, a(n) for n = 1..10000</a> %F A383468 a(n) = A001358(A383469(n)). %e A383468 a(3) = 141 is a term because 141 = 3 * 47 = A001358(46) is a semiprime and 46 = 2 * 23, 141 - 46 = 95 = 5 * 19 and 141 + 46 = 187 = 11 * 17 are all semiprimes. %p A383468 k:= 0: R:= NULL: count:= 0: %p A383468 for s from 1 while count < 100 do %p A383468 if numtheory:-bigomega(s) = 2 then %p A383468 k:= k+1; %p A383468 if andmap(t -> numtheory:-bigomega(t) = 2, [k, s-k, s+k]) then %p A383468 R:= R, s; count:= count+1; %p A383468 fi %p A383468 fi; %p A383468 od: %p A383468 R; %Y A383468 Cf. A001358. A383469. %K A383468 nonn %O A383468 1,1 %A A383468 _Zak Seidov_ and _Robert Israel_, Apr 27 2025