A383470 Numbers k which are divisible by the number of squares mod k.
1, 2, 4, 12, 16, 24, 48, 60, 72, 112, 144, 168, 192, 224, 240, 360, 528, 576, 672, 720, 792, 1188, 1344, 1456, 2016, 2184, 2376, 2448, 2880, 3360, 4032, 4560, 4752, 5940, 6336, 6840, 7392, 8448, 8832, 10080, 11880, 13200, 13248, 15456, 16632, 17472, 19008, 19800
Offset: 1
Keywords
Examples
224 has exactly 28 quadratic residues, that is, A000224(224) = 28. And 224 is 8 * 28, so 224 is an element of this sequence. But 225 has 44 quadratic residues, and 225 is not a multiple of 44, so 225 is not an element of this sequence.
Crossrefs
Cf. A000224.
Programs
-
Mathematica
f[p_, e_] := Floor[p^(e + 1)/(2*p + 2)] + 1; f[2, e_] := Floor[2^e/6] + 2; q[1] = True; q[n_] := Divisible[n, Times @@ f @@@ FactorInteger[n]]; Select[Range[20000], q] (* Amiram Eldar, Apr 27 2025 *)
-
Python
# Without benefit of sympy: from math import prod def factor(n): result = [] for d in two_and_odds(): if n == 1: return result if d > n // d: return result + [(n, 1)] e = 0 while n % d == 0: e += 1 n = n // d if e > 0: result += [(d, e)] def two_and_odds(): yield 2 k = 3 while True: yield k k += 2 # From Chai Wah Wu at A000224 def s(n): return prod((p**(e+1)//((p+1)*(q:=1+(p==2)))>>1)+q for p, e in factor(n)) def main(n): count = 1 for i in range(1,n): if i%s(i) == 0: print(f"{count} {i}") count += 1
Comments