cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383478 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(2,0),(3,0),(0,1).

This page as a plain text file.
%I A383478 #16 May 28 2025 16:22:41
%S A383478 1,2,9,44,220,1134,5950,31608,169488,915420,4972825,27141036,
%T A383478 148711836,817516196,4506838380,24906188912,137933068572,765324011736,
%U A383478 4253501563156,23675286219200,131955035141160,736347621539310,4113559552360230,23003228298637080
%N A383478 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(2,0),(3,0),(0,1).
%H A383478 Robert Israel, <a href="/A383478/b383478.txt">Table of n, a(n) for n = 0..1316</a>
%F A383478 a(n) = [x^n] 1/(1 - x - x^2 - x^3)^(n+1).
%F A383478 a(n) = (n+1) * A063018(n+1).
%p A383478 f:= proc(x,y) option remember;
%p A383478      local t;
%p A383478      t:= 0;
%p A383478      if x >= 1 then t:= t + procname(x-1,y) fi;
%p A383478      if x >= 2 then t:= t + procname(x-2,y) fi;
%p A383478      if x >= 3 then t:= t + procname(x-3,y) fi;
%p A383478      if y >= 1 then t:= t + procname(x,y-1) fi;
%p A383478      t
%p A383478 end proc:
%p A383478 f(0,0):= 1:
%p A383478 seq(f(n,n),n=0..25); # _Robert Israel_, May 28 2025
%Y A383478 Main diagonal of A383477.
%Y A383478 Cf. A063018.
%K A383478 nonn
%O A383478 0,2
%A A383478 _Seiichi Manyama_, Apr 28 2025